作为人工智能领域的热门研究问题,深度强化学习自提出以来,就受到人们越来越多的关注。目前,深度强化学 习能够解决很多以前难以解决的问题,比如直接从原始像素中学习如何玩视频游戏和针对机器人问题学习控制策略,深度强 化学习通过不断优化控制策略,建立一个对视觉世界有更高层次理解的自治系统。其中,基于值函数和策略梯度的深度强化 学习是核心的基础方法和研究重点。本文对这两类深度强化学习方法进行了系统的阐述和总结,包括用到的求解算法和网络 结构。首先,概述了基于值函数的深度强化学习方法,包括开山鼻祖深度Q 网络和基于深度Q 网络的各种改进方法。然后 介绍了策略梯度的概念和常见算法,并概述了深度确定性策略梯度 深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域中的一个重要分支,它结合了深度学习的表征能力与强化学习的决策制定机制。本文由刘建伟、高峰和罗雄麟共同撰写,深入探讨了基于值函数和策略梯度的DRL方法。 一、基于值函数的深度强化学习 值函数在强化学习中用于评估状态的价值或策略的期望回报。深度Q网络(Deep Q-Network, DQN)是这一领域的里程碑式工作,它解决了传统Q学习的两个关键问题:经验回放缓存(experience replay)和固定目标网络(fixed target network)。DQN通过神经网络学习状态动作值函数Q(s, a),并使用贝尔曼最优方程进行更新。随后出现了许多DQN的变体,如Double DQN、 Dueling DQN等,旨在减少过估计,提高学习稳定性。 二、策略梯度方法 策略梯度是另一种强化学习策略,它直接优化策略参数,以最大化期望回报。这种方法的优点是可以处理连续动作空间。文章介绍了策略梯度的基本概念,并讨论了如REINFORCE算法。此外,还提到了深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法,它适用于连续动作空间的问题,通过引入actor-critic结构和经验回放缓存来稳定学习过程。 三、其他深度强化学习方法 除了DQN和DDPG,文章还提及了信赖域策略优化(TRUST Region Policy Optimization, TRPO)和异步优势演员评论家(Accelerated Advantage Actor-Critic, A3C)等策略梯度的变种。TRPO通过约束策略更新的幅度,保证了策略的稳定性,而A3C则利用多线程异步更新,提高了学习速度。 四、前沿进展:AlphaGo与AlphaZero AlphaGo是谷歌DeepMind团队开发的围棋AI,它通过深度学习和蒙特卡洛树搜索结合,击败了世界冠军。AlphaZero是AlphaGo的升级版,不再依赖人类知识,仅通过自我对弈就能掌握多种棋类游戏的顶尖水平。AlphaZero的成功表明,基于深度强化学习的方法可以实现通用的游戏策略学习。 五、未来展望 随着技术的发展,深度强化学习的应用将更加广泛,如机器人控制、自动驾驶、资源调度等领域。未来的研究方向可能包括更高效的算法设计、更好的泛化能力、以及处理高维度和连续状态/动作空间的能力。同时,解决现实世界中的延迟问题、探索环境不确定性以及提高学习效率也是重要的研究课题。 总结,深度强化学习通过值函数和策略梯度方法,实现了从原始输入数据中自动学习高级行为的突破。这些方法的不断发展和完善,不仅推动了人工智能的进步,也为实际问题的解决提供了强大的工具。
2025-06-26 11:02:08 1.35MB 深度学习 强化学习 深度强化学习
1
该项目聚焦于人工智能领域中的强化学习应用,具体是针对移动边缘计算(MEC)环境下的计算卸载和资源分配问题。MEC是一种新兴的无线通信技术,它将云计算能力下沉到网络边缘,为用户提供低延迟、高带宽的服务。在MEC环境中,智能设备可以将计算密集型任务卸载到附近的边缘服务器进行处理,从而减轻本地计算负担,提升能效。 强化学习是机器学习的一个分支,其核心思想是通过与环境的交互来优化决策策略。在这个项目中,深度强化学习(Deep Reinforcement Learning, DRL)被用作解决MEC的计算卸载和资源分配问题的方法。DRL结合了深度学习的特征表示能力和强化学习的决策制定能力,能够处理复杂的、高维度的状态空间。 在计算卸载方面,DRL算法需要决定哪些任务应该在本地执行,哪些任务应上传至MEC服务器。这涉及到对任务计算需求、网络状况、能耗等多种因素的综合考虑。通过不断地试错和学习,DRL代理会逐渐理解最优的策略,以最小化整体的延迟或能耗。 资源分配方面,DRL不仅要决定任务的执行位置,还要管理MEC服务器的计算资源和网络带宽。这包括动态调整服务器的计算单元分配、优化传输速率等。目标是最大化系统吞吐量、最小化用户等待时间或者平衡服务质量和能耗。 项目可能包含以下几个关键部分: 1. **环境模型**:构建一个模拟MEC环境的模型,包括设备状态、网络条件、计算资源等参数。 2. **DRL算法实现**:选择合适的DRL算法,如DQN(Deep Q-Network)、DDPG(Deep Deterministic Policy Gradient)、A3C(Asynchronous Advantage Actor-Critic)等,并进行相应的网络结构设计。 3. **训练与策略更新**:训练DRL代理在环境中学习最优策略,不断更新网络权重。 4. **性能评估**:通过大量实验验证所提出的算法在不同场景下的性能,如计算效率、能耗、服务质量等。 5. **结果分析与优化**:分析训练结果,找出可能存在的问题,对算法进行迭代优化。 通过这个项目,你可以深入理解强化学习在解决实际问题中的应用,同时掌握深度学习与MEC领域的最新进展。对于想要从事AI和无线通信交叉领域的研究者或工程师来说,这是一个非常有价值的实践案例。。内容来源于网络分享,如有侵权请联系我删除。
1
内容概要:本文介绍了一个利用深度学习,特别是强化学习(Reinforcement Learning, RL),来控制行走机器人的项目。目标是通过训练神经网络,使机器人能够根据环境反馈学习步态控制。项目使用Python 3.6+, TensorFlow/PyTorch, OpenAI Gym等工具,并提供了详细的代码结构和核心部分说明,包括环境配置、智能体训练、主控制程序等。 适合人群:具备深度学习和强化学习基础知识的研发人员,对机器人控制有研究兴趣的技术人员。 使用场景及目标:适用于需要使用强化学习控制行走机器人的科研项目或实际应用场景,旨在提升机器人步态控制的效果和稳定性。 阅读建议:读者应具备Python编程基础和一定的深度学习背景。建议从理解项目的基本架构开始,逐步深入了解各个模块的具体实现和调优技巧,最终能够在自己的项目中应用类似的方法。
2025-04-02 00:07:30 19KB 深度学习 强化学习
1
参考资料,https://zhuanlan.zhihu.com/p/32089487,本实现参考借鉴了该资源,本实现的立体四子棋为落子有限制版的立体四子棋(qubic),必须先下下层的棋子,上层的相关棋子才能继续落子,经过3500次的训练,ai水平基本可以了,模型为best_policy.model,python human_play.py即可对战。训练使用python train.py. python版本2
2023-01-03 15:29:42 1.95MB 立体四子棋 深度学习 强化学习 alphazero
1
利用simulink中自带的深度强化学习包中的DQN算法优化
2022-11-04 12:04:49 567KB simulink 深度学习 强化学习
1
pid控制器设计代码matlab 真棒纸 有关深度学习,强化学习,GAN和Quadrotor控制理论的最新论文清单。 最新的: 深度学习: 2017年 。 Jakob N.Foerster等al。 牛津大学,加州大学伯克利分校,CMU的OpenAI。 。 盖·卡兹(Guy Katz)等。 al。 斯坦福大学。 。 Priya Goyal等。 Facebook。 。 陈畅友等。 布法罗大学,杜克大学。 。 让·皮埃尔·布赖特(Jean-Pierre Briot)等。 巴黎高中。 索尼等 。 刘伟义等。 中国电子科技大学,IBM沃森研究中心,哥伦比亚大学,波士顿大学。 大卫·雅各布斯(David Jacobs)。 马里兰大学-马里兰大学学院分校。 。 UT奥斯汀。 Goodfellow等。 al。 蒙特利尔大学。 (2014)。 **苏吉思·拉维(Sujith Ravi)。 Google研究。 ** 。 Soumith。 。 Vishwanath等。 罗格斯。 。 九乡谷。 南大,新加坡。 。 永成静微软,亚利桑那州立大学。 。 梁铮等。 澳大利亚悉尼科技大学。 。 王枫代尔夫特。 。 J
2022-07-15 15:15:56 19.18MB 系统开源
1
思维导图根据王树森老师课件整理。 主要包括: 强化学习基本概念 基本方法(Value-Based、Policy-Based、Actor-Critic) 策略学习(Reinforce with baseline、A2C) 价值学习(Sarsa、Q-Learning(DQN)) 连续动作控制(DPG、DDPG) 包含上述各种基本算法的原理及公式推导
2022-05-16 11:05:40 24MB 机器学习 深度学习 强化学习
1
使用Python和Keras进行深度学习/强化学习股票投资-定量投资和算法交易的前沿解决方案简介(修订版) 强化学习是一种很好的应用于股票数据学习的自学习机器学习技术。 本书介绍了如何使用Python进行基于强化学习的股票投资模拟程序的开发。 为此,我在理论和代码级别上添加了详细的说明。 通过本书,您将能够理解深度学习和强化学习,并将其用于包括股票投资在内的多个领域。 购买链接 本书涵盖的内容 深度学习与强化学习理论 如何将强化学习应用于股票投资 基于强化学习的股票投资系统开发 采集和处理实际库存数据以进行强化学习 如何通过强化学习来学习库存数据 如何使用学习型强化学习模型 如何基于强化学习定制股票投资系统 首选项 pip install tensorflow==1.15.2 pip install plaidml-keras==0.6.2 pip install mplfinan
2022-05-12 16:25:26 2.31MB Python
1
随着DeepMind公司开发的AlphaGo升级版master战胜围棋世界冠军,其背后应用的强化学习思想受到了广泛关注,也吸引了我想一探究竟为什么强化学习的威力这么大。早在2015年,DeepMind就在youtube上发布了围棋程序master的主要作者David Silver主讲的一套强化学习视频公开课,较为系统、全面地介绍了强化学习的各种思想、实现算法。其一套公开课一共分为十讲,每讲平均为100分钟。其中既包括扎实的理论推导,也有很多有趣的小例子帮助理解,对于理解强化学习来说是一套非常好的教程。我在跟随这套教程学习的过程中一边听讲、一边笔记,最后编写代码实践,终于算是对强化学习的概念终于有了初步的认识,算是入门了吧。为了巩固加深自己的理解,同时也能为后来的学习者提供一些较为系统的中文学习资料,我萌生了把整个公开课系统整理出来的想法。
2022-04-16 14:07:47 2.4MB 算法 学习 深度学习 强化学习
1
Leiden大学Aske Plaat教授《深度强化学习》 深度强化学习近年来备受关注。在自动驾驶、游戏、分子重组和机器人等各种活动中,他们都取得了令人印象深刻的成果。在所有这些领域,计算机程序已经学会了解决困难的问题。他们学会了飞行模型直升机和表演特技动作,如回旋和翻滚。在某些应用中,他们甚至比最优秀的人类还要优秀,比如Atari、Go、扑克和星际争霸。深度强化学习探索复杂环境的方式提醒我们,孩子们是如何学习的,通过开玩笑地尝试东西,获得反馈,然后再尝试。计算机似乎真的拥有人类学习的各个方面; 这是人工智能梦想的核心。教育工作者并没有忽视研究方面的成功,大学已经开始开设这方面的课程。这本书的目的是提供深度强化学习领域的全面概述。这本书是为人工智能的研究生写的,并为希望更好地理解深度强化学习方法和他们的挑战的研究人员和实践者。我们假设学生具备本科水平的计算机科学和人工智能知识;本书的编程语言是Python。我们描述了深度强化学习的基础、算法和应用。我们将介绍已建立的无模型和基于模型的方法,它们构成了该领域的基础。发展很快,我们还涵盖了一些高级主题: 深度多智能体强化学习、深度层次强化学习和深度元学习。
2022-01-12 19:11:54 23.12MB 深度学习 强化学习