本书系统讲解Transformer架构及其在机器学习中的应用,涵盖从基础原理到前沿变体的全面内容。结合数学理论与实践案例,深入剖析BERT、GPT、Vision Transformer等主流模型,并拓展至语音、视觉、多模态等领域。书中包含丰富的动手案例,覆盖机器翻译、情感分析、自动语音识别等真实场景,代码可在Google Colab一键运行。适合数据科学家、研究人员及AI开发者快速掌握Transformer核心技术并应用于实际项目。
2026-01-28 10:36:21 32.63MB Transformer 深度学习 自然语言处理
1
深度学习DNN正向预测神经网络与逆向设计神经网络模型 超表面参数设计 反射谱预测fdtd仿真 复现lunwen:2018 Advanced Material:A Bidirectional Deep Neural Network for Accurate Silicon Color Design lunwen介绍:利用深度学习DNN神经网络模型,实现反射谱预测与结构参数逆向设计功能 结构色体现为结构的反射谱线,构建两个DNN模型,一个用于输入结构参数,输出对应的结构色谱线参数,不需要FDTD仿真即可得到预测谱线 第二个DNN模型用于逆向设计,输入所结构色谱线参数,网络可以输出对应的结构尺寸参数,根据目标来设计结构 案例内容:主要包括四原子结构的反射谱仿真计算,以及构建结构参数与反射谱线的庞大的数据库 包括两个深度学习模型,一个是正向预测DNN模型,包括网络框架的构建,pytorch架构,网络的训练以及测试;还有一个逆向设计的DNN模型,同样包括网络的训练和预测 以及做了一个例子的对照和使用 可以随机更改参数来任意设计超表面原子的参数 案例包括fdtd模型、fdtd设计脚本、pytho
2026-01-26 18:08:22 5.24MB ajax
1
Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。
2026-01-26 16:12:35 301KB matlab 深度学习
1
本文详细介绍了一种基于YOLOv8、YOLOv5和YOLOv11的野生菌菇检测识别系统,该系统利用PyQt5设计了两种简约的UI界面,支持多种功能如单张图片识别、文件夹遍历识别、视频文件识别、摄像头实时识别、结果文件导出以及目标切换查看。系统通过深度学习技术,结合卷积神经网络和注意力机制,实现了对野生菌菇的高精度检测和分类。文章还详细介绍了系统环境配置、数据集结构、算法模型(包括YOLOv8和YOLOv11的核心特性和改进)、模型训练和评估步骤,以及训练结果的分析。该系统为野生菌菇的快速准确识别提供了技术支持,对食品安全和生态保护具有重要意义。 野生菌菇检测系统项目源码的详细介绍表明,该系统是一个综合性的技术应用项目,它以深度学习技术为基础,主要针对野生菌菇的检测和分类任务进行了深入开发。项目的核心是采用了YOLO系列的卷积神经网络模型,其中特别提到了YOLOv8、YOLOv5和YOLOv11这三种模型的具体应用。 系统使用了PyQt5框架,设计了两个用户友好的界面,分别对应不同的操作模式和功能。第一种界面能够处理单张图片的识别任务,第二种界面则适用于批量处理,支持文件夹遍历识别和视频文件的连续识别。此外,系统还包括了对摄像头捕获的实时影像进行实时识别的功能,极大的提高了使用灵活性。 在核心功能上,系统依赖于先进的深度学习算法,特别是卷积神经网络(CNN),这种算法在图像识别和分类领域有着广泛的应用。为了进一步提升识别性能,系统还融入了注意力机制,这能够使模型更加聚焦于图像中关键信息的提取,提高了检测的准确性。 系统还涵盖了模型训练和评估的全过程。文章详细介绍了如何配置系统运行环境,构建和组织数据集,以及如何训练和优化模型。对于YOLOv8和YOLOv11模型,文章特别强调了它们的核心特性以及在项目中的改进点。 训练完成后的模型评估步骤也是不可或缺的一部分,这一步骤对于保证模型在实际应用中的性能至关重要。评估内容包括但不限于模型的准确性、召回率、F1分数等指标,以确保模型对野生菌菇的识别结果既准确又全面。 野生菌菇检测系统所展现的技术支持,对于食品安全和生态保护具有极其重要的意义。在食品安全方面,快速准确的检测野生菌菇能够帮助防止食用有毒菌菇导致的食物中毒事件。在生态保护方面,有效的分类和监测野生菌菇生长状况,有助于保护生物多样性,维持生态平衡。 YOLO系列模型作为目标检测技术的代表,一直以来在速度和准确性方面都表现卓越。在野生菌菇检测领域,它们的运用进一步证明了其在处理复杂图像识别任务中的强大能力。而这种结合了计算机视觉技术的系统,不仅提升了识别效率,还为科研人员和普通用户提供了实用、高效的工具。 YOLO模型的进化,比如YOLOv8和YOLOv11的出现,不断推动着目标检测技术的进步。这些模型的核心特性,如高精度的检测能力,快速的处理速度,使得它们在野生菌菇检测系统中表现得尤为出色。模型的改进点,如网络结构的调整、特征提取方式的优化等,使得系统对于野生菌菇的识别更加精准,为野生菌菇的分类和研究提供了有力的数据支持。 YOLOv8和YOLOv11的引入,也展示了深度学习在计算机视觉领域应用的广泛前景。深度学习的网络模型,尤其是卷积神经网络,能够从大量的图像数据中自动提取特征,并通过训练学习到如何识别和分类不同种类的野生菌菇。注意力机制的引入,则进一步强化了模型对于特定特征的识别能力,使得检测更加高效和准确。 野生菌菇检测系统项目源码的发布,不仅为相关领域提供了一个强大的工具,也展示了深度学习和计算机视觉技术在实际应用中的巨大潜力和应用价值。通过持续的技术创新和模型优化,未来在野生菌菇检测乃至其他目标检测任务中,我们有望看到更加智能化、自动化的解决方案,为科研工作和日常生活带来更多的便利。
2026-01-26 11:10:00 10KB 深度学习 目标检测 计算机视觉
1
内容概要:本文深入探讨了MvsNet深度学习的三维重建技术,详细介绍了其原理、实现方法以及全套代码。主要内容分为三个部分:一是MvsNet的介绍,解释了其作为多视图立体匹配(MVS)算法的优势;二是对MvsNet的代码进行了全面解读,涵盖数据预处理、模型训练和三维重建的具体步骤;三是提供了训练自定义数据集的指导,包括数据收集、标注和处理。通过这些内容的学习,读者能够掌握MvsNet的工作机制并应用于实际项目中。 适合人群:对三维重建技术和深度学习感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解MvsNet算法及其应用场景的研究人员,以及希望通过自定义数据集提升模型性能的开发者。 其他说明:本文不仅提供理论知识,还附带详细的代码实现和数据处理方法,帮助读者更好地理解和应用MvsNet技术。
2026-01-26 10:56:16 1.01MB
1
Mvsnet深度学习驱动的三维重建技术:全套代码与讲解,探索数据集训练的实践之路,深度解析Mvsnet:基于深度学习的三维重建全套代码与数据集训练详解,Mvsnet深度学习的三维重建 全套代码和讲解 学习如何训练自己的数据集 ,Mvsnet; 深度学习; 三维重建; 全套代码; 训练数据集。,《Mvsnet深度学习三维重建全解及自定义数据集训练教程》 Mvsnet是一种基于深度学习的三维重建技术,它通过使用神经网络模型来理解和重建现实世界的三维结构。该技术的核心在于能够将二维图像序列转化为精确的三维模型,这一过程在计算机视觉和机器人导航等多个领域都有着广泛的应用。 在深入研究Mvsnet的三维重建技术之前,我们首先要明确深度学习的概念。深度学习是一种通过建立、训练和使用神经网络来解决问题的技术,它模仿了人类大脑的处理信息方式,特别是能够从大量数据中自动提取特征。通过这种方式,深度学习模型可以在众多任务中实现超越传统算法的性能。 三维重建技术的目标是从二维图像中恢复出三维空间的结构,这在计算机图形学、视觉特效制作、建筑信息模型(BIM)、文化遗产记录以及虚拟现实(VR)等领域具有重要价值。三维重建通常涉及从不同的视角拍摄多张照片,然后利用这些照片中的共同特征来计算物体表面的三维坐标。 Mvsnet通过构建一个多视角立体网络(Multi-View Stereo Network),来实现从一系列相关图像中提取深度信息的任务。它将深度学习方法应用于多视角立体视觉问题,利用深度卷积神经网络来预测像素的深度值。通过训练网络处理大量带深度标签的图像对,Mvsnet能够学习如何从新的图像序列中生成准确的深度图。 在这个过程中,数据集的训练至关重要。数据集是神经网络训练的基础,它包含了成千上万的图像及其对应的三维信息。这些数据需要经过预处理、增强和标注,才能被用作训练材料。训练过程中,Mvsnet会不断调整其内部参数,以减少预测深度图与真实深度图之间的误差。随着训练的进行,模型会越来越精确地重建三维空间。 由于三维重建技术在不同应用中有着不同的需求,因此Mvsnet的训练还需要针对具体情况进行微调。自定义数据集的训练是实现这一目标的重要步骤。自定义数据集训练允许研究者或开发者根据特定的应用场景准备相应的图像和标签数据。例如,如果目的是在室内环境中重建三维模型,就需要收集室内的图像数据,并对它们进行标注,以便用于Mvsnet模型的训练。 本套文件提供了关于Mvsnet三维重建技术的全套代码和详细讲解,包括如何训练数据集。文件内容不仅涉及代码层面的实现,还包括对深度学习和三维重建概念的深入解释。通过对文件内容的学习,用户可以掌握如何使用Mvsnet技术对现实世界的场景进行三维重建,并根据自己的需求训练定制化的数据集。这些知识和技能对于那些希望在三维视觉领域有所作为的研究人员、工程师或开发者来说,是非常宝贵的。 此外,本套文件还配备了丰富的图表和实例,帮助读者更好地理解复杂的概念和技术细节。通过图文并茂的方式,即使是初学者也能逐步建立起对Mvsnet三维重建技术的认识,并最终能够独立地完成从数据准备到模型训练的整个流程。 Mvsnet三维重建技术的全套代码与讲解为深度学习领域带来了新的研究方向和应用可能。它不仅展示了深度学习在三维重建任务中的强大能力,也为相关领域的研究人员和开发者提供了实用的工具和方法。通过学习这些材料,可以大大缩短学习者掌握三维重建技术的时间,加快相关项目的开发进度。
2026-01-26 10:51:12 1.94MB
1
标题Django与深度学习融合的淘宝用户购物可视化及行为预测系统设计AI更换标题第1章引言介绍系统设计的背景、意义,分析国内外在淘宝用户购物行为预测与可视化方面的研究现状,并指出论文的方法及创新点。1.1研究背景与意义阐述淘宝用户购物行为分析对电商平台的重要性及可视化预测系统的价值。1.2国内外研究现状综述国内外在电商用户行为预测与可视化领域的研究进展及成果。1.3研究方法及创新点概述系统设计采用的方法,并突出与现有研究相比的创新之处。第2章相关理论总结和评述深度学习及用户行为预测相关理论,为系统设计提供理论基础。2.1深度学习基础理论介绍神经网络、深度学习模型及其在用户行为预测中的应用。2.2用户行为预测理论分析用户购物行为预测的原理、方法及影响因素。2.3可视化技术理论阐述数据可视化技术的基本原理、方法及应用场景。第3章系统设计详细描述基于Django与深度学习的淘宝用户购物可视化与行为预测系统的设计方案。3.1系统架构设计介绍系统的整体架构,包括前端、后端及数据库设计。3.2深度学习模型设计阐述用于用户行为预测的深度学习模型的选择、构建及训练过程。3.3可视化模块设计如何实现用户购物数据的可视化展示,包括图表类型、交互设计等。第4章数据收集与分析方法介绍系统设计中数据收集的途径、分析方法及数据处理流程。4.1数据收集途径说明从淘宝平台获取用户购物数据的具体方法和途径。4.2数据分析方法阐述采用的数据分析方法,如统计分析、机器学习算法等。4.3数据处理流程数据清洗、预处理及特征提取等数据处理步骤。第5章研究结果呈现系统设计的实验分析结果,包括预测准确率、可视化效果等。5.1预测结果分析通过图表和文本解释,展示系统对用户购物行为的预测准确率及效果。5.2可视化效果展示通过截图或视频等形式,展示系统实现的用户购物数据可视化效果。5.3对比方法分析与其他类似系统进行对比分析,
2026-01-23 10:42:48 15.3MB python django 深度学习 mysql
1
yolact_edge权重文件:yolact_edge_mobilenetv2_54_800000.pth
2026-01-20 13:57:57 34.64MB 深度学习
1
yolact_edge权重文件:yolact_edge_vid_resnet50_847_50000.pth
2026-01-20 13:55:48 135.28MB 深度学习 语义分割
1