车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。 纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(192010202) 代表有1920个时间段,1020个区域,2个特征分别为区域的入流量与出流量
2024-06-01 21:17:29 1.11MB 深度学习 python 数据集
1
1、资源内容:基于Python实现神经网络与深度学习大作业(源码).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、更多仿真源码和数据集下载列表(自行寻找自己需要的):https://blog.csdn.net/m0_62143653?type=download 4、免责声明:本资源作为“参考资料”而不是“定制需求”不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-01-11 16:43:30 165KB python 神经网络 深度学习
2022NUK-NLP大作业—基于深度学习的文本分类 最终项目介绍及代码说明 介绍 2022NUK NLP大作业 中文10类别单一文本分类 数据集采用gaussic的数据集,https://github.com/gaussic/text-classification-cnn-rnn 代码具体说明 通过对 torch_model.py 的修改可以将模型在 CNN、LSTM、GRU 中进行切换。 LSTM 和 GRU 同为 RNN 模型,代码区别如下:
深度学习大作业文本分类任务源代码。 使用说明如下: Baselines baseline运行方法:运行 codes/baselines/run.py , 用 --model参数指定需要运行的模型(必选),用 --dataset 参数指定数据集(可选,默认为AGNews) baseline中各模型的超参数设置见各模型定义文件中 预训练参数下载地址: 链接:https://pan.baidu.com/s/1wqxUAA4LpE3LIgF3kP-6QQ 提取码:gaw3 下载后放入 codes/baselines/pre_trained 中即可 数据集: 中文数据集,原作者从THUCNews中抽取的20万条新闻标题。一共10个类别,每类2万条。 类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。 英文数据集,来自文本分类经典数据集AG News,包含新闻的标题、内容和标签。使用中对数据进行了简单处理,将标题和内容进行了拼接作为一列,并将训练数据划分为了训练集和验证集。一共4个类别,每类13900条。 类别:世界、体育、商业、科技。
《关于transformer的各种变形的调研报告》
2021-12-30 17:10:55 3.35MB 调研报告 transformer 深度学习 课程作业