该存储库包含本文中使用的tensorflow模型和训练脚本: 。 这些脚本改编自,此处为了使这些脚本自成一体,在此重复了一些脚本。 要训​​练具有3个完全连接的层且每层具有128个神经元的DNN,请运行: python train.py --model_architecture dnn --model_size_info 128 128 128 命令行参数--model_size_info用于将神经网络层尺寸(例如层数,卷积过滤器尺寸/步幅)作为列表传递给models.py,后者根据提供的模型体系结构和层尺寸构建张量流图。 有关每种网络体系结构的model_size_info的更多信息,请参见 。 与所有的超参数训练命令复制在显示模型给出了。 要从训练/验证/测试集上的检查点对训练后的模型进行推断,请运行: python test.py --model_architecture d
2023-04-03 10:17:17 19.47MB tensorflow keyword-detection C
1
网络模型共含有19层,其中7层传统卷积层、8层深度可分离卷积层、4层最大池化层。同时,使用了 Adam优化器及对数损失函数。网络结构如图4所示,顺序从左至右、从上至下,并做以下说明: Conv为传统卷积层,其后3个参数分别代表:卷积核个数、卷积核大小、步长。 activation表示该层对应的激活函数。 SeparableConv为深度可分离卷积层,其后2个参数分别代表:卷积核个数、卷积核大小,步长均为 1。 MaxPooing为最大池化层,其后2个参数分别代表:滤波器大小、步长。 ReLU为线性整流函数,作为卷积后的激活函数,相比sigmoid函数和tanh函数有着更好的效果。 softmax用于将最后一层卷积输出的七个数值映射到(0,1)区间,并使它们和为 1。 这样能更直观地以概率的形式显示结果。 在每一层卷积过后,都加入了批量归一化(Batch Normalization,BN)层,图中未标出。批量归一化对网络训练的各个方面都有一定的提升作用。它可以加快训练并提高性能、解决梯度消失的问题、规范权重、优化网络梯度流等,所以很有必要加入。 整个网络参数数量仅为75906个,其中可训
2023-03-02 21:47:08 1.02MB 卷积神经网络
1
海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。 使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。 为此,在标准的SSD( single shot multiBox detector)目标检测模型基础上,结合 Xception 深度可分卷积,提出一种轻量 SSD 模型用于海面目标检测。 方法 在标准的 SSD 目标检测模型基础上,使用基于 Xception 网络的深度可分卷积特征提取网络网络中的 exit flow 层和 Conv1 层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量 SSD 目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。
深度可分离卷积神经网络1. 深度可分离卷积网络介绍1. 1 深度可分离卷积网络与普通卷积网络1.2 普通卷积与深度可分离卷积计算量对比2. 深度可分离卷积网络实现2.1 导入相应的库2.2 数据集的加载与处理2.3 构建模型2.4 2.4 模型的编译与训练2.5 学习曲线绘制2.6 模型验证 1. 深度可分离卷积网络介绍 1. 1 深度可分离卷积网络与普通卷积网络 深度可分离卷积神经网络是卷积神经网络的一个变种,可以对卷积神经网络进行替代。对于普通的卷积申请网络,如下图左边部分所示,由卷积层,批归一化操作与激活函数构成的。对于深度可分离卷积网络,它是由一个3×3深度可分离的卷积层,批归一化,
2021-07-01 11:00:11 1012KB ens low ns
1