语音识别以语音为研究对象,它是语音信号处理的一个重要研究发现,是模型识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域。甚至还涉及到人的体态语言,最终目标是实现人与机器进行自然语言通信。 该资源使用TensorFlow2.x框架,详细的讲解了如何实现自动语音识别。 由于数据集THCHS-30过大,可自行去以下地址下载:http://www.openslr.org/18/,也可通过在博主的网盘分享下载:链接:https://pan.baidu.com/s/1tItruoTSgku8F_m2f-Gusg?pwd=duzh 提取码:duzh
2024-12-02 16:22:11 57.69MB 自然语言处理 语音识别 深度学习
1
该数据是通过裁剪人员后的图片,进行图像中手机的标注,适用于业务场景为先进行人员检测,再对人员图像中手机进行二次检测。 里面含有打电话数据共8201张,已进行标注和调整,有VOC标注格式和yolo标注格式两种,可直接用于YOLO的训练。也可转为自己想用的其他格式。 另有人员未打电话数据集10000多张,无标注内容。结合打电话数据集,可适用于分类模型的训练。 数据场景种类多,数据量大,数据质量高,实测yolov5目标检测训练效果好,模型可通用于各种场景下的识别,实际现场识别准确率能达到90%。
2024-12-02 10:11:37 932.17MB 数据集 目标检测 模型训练 深度学习
1
深度学习-torch: cublas64_12.dll
2024-11-23 06:34:12 93.52MB 深度学习 torch pytorch
1
基于深度学习的复杂行车环境视觉感知算法研究_屈治华.caj
2024-11-21 14:08:16 5.04MB
1
点云技术在现代计算机视觉和机器人领域中扮演着至关重要的角色,它允许设备理解周围环境的空间结构。本项目提供了一种使用C++实现的点云获取方案,特别针对深度相机,如Intel RealSense系列。通过这个压缩包,我们可以获得完整的源代码以及所需的SDK安装包,便于开发者快速理解和实现点云数据的采集与处理。 1. **点云获取**: 点云是三维空间中一系列离散点的集合,这些点代表了环境的几何信息。在本项目中,使用C++编程语言,开发者可以学习如何从深度相机获取并处理点云数据。点云数据通常包含每个点的三维坐标(x, y, z)以及可能的其他属性,如颜色信息。 2. **深度相机**: 深度相机,如Intel RealSense,通过同时发射红外光和接收反射光来计算物体的距离,从而生成深度信息。这种技术基于时间飞行(Time-of-Flight)或结构光等原理。Intel RealSense SDK提供了接口和工具,使开发人员能够轻松集成深度相机功能到他们的应用程序中。 3. **C++编程**: C++是一种强大的系统级编程语言,常用于开发高性能的应用程序,包括实时的图像处理和计算机视觉任务。在这个项目中,C++被用来编写获取和处理点云的代码,展示了如何利用面向对象的特性来构建高效且可维护的代码结构。 4. **SDK安装包**: "Intel.RealSense.SDK-WIN10-2.53.1.4623.exe"是Intel RealSense SDK的Windows 10版本,包含了库、头文件、示例代码和其他必要的组件。安装后,开发者可以访问到各种API,用于控制相机、捕获图像、解析深度数据等。 5. **代码文件解析**: - **获取彩色图和深度图.cpp**:这个文件展示了如何同时获取和处理来自深度相机的彩色图像和深度图像。彩色图像提供了环境的颜色信息,而深度图像则提供了距离信息。 - **获取点云.cpp**:此文件包含将深度图像转换为点云的算法。通常,这涉及到对深度图像的每一像素进行处理,计算其对应的三维坐标,并组合成点云数据结构。 - **获取相机参数.cpp**:这部分代码可能涉及读取和应用相机内参,以便校正图像畸变和精确计算三维坐标。 通过这个项目,开发者不仅可以学习到如何利用C++和Intel RealSense SDK来处理点云数据,还能深入理解深度相机的工作原理和实际应用。此外,对于想要在机器人导航、AR/VR、工业检测等领域使用点云技术的开发者来说,这是一个宝贵的资源。
2024-11-18 19:41:26 724.32MB 深度相机 realsense
1
标题 "d435i深度相机读取数据并保存到本地" 涉及到的主要技术是使用RealSense D435i深度相机获取3D点云数据,并将其存储在本地计算机上。RealSense D435i是Intel公司生产的一款高性能、多功能的深度相机,它能够提供RGB图像和深度信息,广泛应用于机器人导航、AR/VR、3D建模等领域。 我们需要了解3D点云的基本概念。3D点云是由多个三维坐标点组成的集合,每个点代表空间中的一个位置,通常附带有颜色信息。这些点通过扫描或传感器测量获得,可以用于重建物体表面的几何形状,从而实现3D建模和环境感知。 RealSense D435i相机的工作原理是利用结构光技术和ToF(Time-of-Flight)来生成深度信息。结构光技术通过投射特定图案的红外光到场景上,然后通过摄像头捕捉反射回来的图案,通过计算图案的变形程度来计算距离;ToF则通过测量光线从发射到返回的时间来确定距离。这两种方法结合使得D435i能提供精确且稳定的深度数据。 为了读取D435i相机的数据,我们需要使用Intel提供的RealSense SDK(软件开发工具包)。SDK提供了多种编程语言(如C++、Python等)的接口,使得开发者可以方便地访问相机的各种功能。以下是一个基本的步骤概述: 1. **安装SDK**:首先需要在官方GitHub仓库下载并安装适用于目标平台的RealSense SDK,确保包含相应的库和头文件。 2. **初始化相机**:在代码中,通过SDK创建一个设备实例,连接到D435i相机,设置所需的流类型(如深度图、彩色图等)和分辨率。 3. **数据流处理**:启动数据流后,SDK会持续接收相机发送的数据。开发者可以设置回调函数来处理每帧数据,比如将深度数据和RGB数据配准在一起,形成3D点云。 4. **点云生成**:从深度数据和颜色数据中,我们可以使用算法(如PCL库中的`pcl::concatenateFields`)将两者合并,生成带有颜色信息的3D点云。 5. **保存数据**:将生成的点云数据保存为本地文件,常见的格式有`.pcd`(Point Cloud Data)、`.ply`或`.xyzrgb`。可以使用PCL库或其他专门的点云处理库来完成这个任务。 6. **优化和应用**:根据实际需求,可能还需要对点云进行进一步处理,如滤波、降噪、分割等,以提高数据质量,然后应用于3D重建、目标识别等任务。 文件名 "d435i_develop" 暗示这是一个关于D435i开发的项目或教程,可能包含源代码、配置文件和说明文档。通过这个项目,你可以学习如何使用RealSense SDK从D435i获取数据,以及如何将这些数据转换为3D点云并保存到本地。在实际操作中,你将深入理解3D视觉技术和深度相机的工作原理,这对于在机器人学、计算机视觉等领域进行创新性工作至关重要。
2024-11-18 15:21:33 206.35MB 3D点云
1
视频课程下载——深度学习-3D点云实战系列课程,附源码
2024-11-11 20:33:27 195B 深度学习 课程资源
1
平均分800左右
2024-11-07 17:14:14 4.69MB 深度学习
1
深度学习的数学》是由涌泉良幸和涌泉井美共同编著的一本深度学习领域的入门书籍,针对想要深入理解深度学习基础的初学者。这本书以清晰的逻辑和高清的排版,提供了丰富的数学知识,帮助读者建立起扎实的理论基础。 深度学习是人工智能的一个重要分支,它依赖于复杂的数学模型,特别是线性代数、概率论和统计学、微积分等领域的知识。在本书中,作者将详细介绍这些关键的数学概念,并将其与深度学习的实际应用相结合,使得理论学习更为生动有趣。 1. **线性代数**:在深度学习中,线性代数扮演着至关重要的角色。书中会讲解向量、矩阵、张量的基本操作,如矩阵乘法、逆矩阵、特征值与特征向量,以及线性变换和线性回归。这些知识对于理解神经网络的权重更新、反向传播算法至关重要。 2. **微积分**:微积分是理解和优化深度学习模型的基础。书中会涉及偏导数、梯度、多元函数的极值问题,这些都是优化算法如梯度下降法的核心。同时,还会讲解链式法则,它是反向传播算法的数学基础,用于计算神经网络中各层参数的梯度。 3. **概率论与统计学**:深度学习模型的训练往往基于概率框架,如最大似然估计和贝叶斯推断。书中会介绍条件概率、联合概率、边缘概率,以及高斯分布、伯努利分布等常见概率分布。此外,还会讲解如何通过统计学方法评估模型性能,如均方误差、交叉熵损失等。 4. **优化理论**:深度学习模型的训练过程实质上是一个优化问题,因此优化理论不可或缺。书中会讨论不同的优化算法,如梯度下降、随机梯度下降、动量法、Adam等,以及它们的收敛性和性能对比。 5. **神经网络的数学原理**:书中会深入解析神经网络的结构和工作原理,包括激活函数(如sigmoid、ReLU)、损失函数、前向传播和反向传播的过程,以及卷积神经网络和循环神经网络的数学基础。 6. **深度学习实践**:除了理论知识,书中也会结合实际案例,介绍如何使用Python和深度学习框架(如TensorFlow或PyTorch)实现这些数学概念,让读者能够将理论应用于实践中。 这本书是深度学习初学者的宝贵资源,通过系统学习,读者可以建立起对深度学习的全面理解,为后续的进阶研究打下坚实的基础。强烈建议所有对深度学习感兴趣的读者下载阅读,以深化对这一领域的认知。
2024-11-04 09:34:04 8.21MB 深度学习
1