JSP的标准测试数据集,包含40个算例(la01~40)。数据来源:S. Lawrence. "Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques (Supplement).", Graduate School of Industrial Administration. Pittsburgh, Pennsylvania, Carnegie-Mellon University, 1984.
2025-10-09 22:29:30 20KB 数据集 作业车间调度 运筹优化
1
《图像去雨模型训练:深度解析Rain100H测试数据集》 在计算机视觉领域,图像去雨是一项重要的技术,其目标是清除图像中的雨水干扰,恢复清晰的视觉效果。Rain100H测试数据集是专为图像去雨模型训练而设计的,它在该领域的研究中扮演着至关重要的角色。本文将详细阐述Rain100H数据集的特性和应用场景,以及如何利用它来提升图像去雨模型的性能。 Rain100H数据集的核心在于其丰富的雨滴干扰样本,这些样本涵盖了不同雨量、角度和光照条件下的图像。数据集的创建旨在模拟真实世界中的复杂降雨情况,使训练出的模型具备更广泛的泛化能力。数据集中的每个样本通常包括两部分:带有雨滴的原始图像( rainy image)和对应的无雨干净图像(clean image)。这样的配对设计使得模型可以学习到去除雨滴的具体特征和模式。 在训练过程中,数据集的划分至关重要。Rain100H可能包括训练集和测试集,其中训练集用于模型参数的优化,而测试集则用来评估模型在未见过的数据上的表现。通过交叉验证等技术,我们可以确保模型不会过拟合或欠拟合,从而达到理想的去雨效果。 在利用Rain100H进行模型训练时,常采用深度学习的方法,如卷积神经网络(CNN)。CNN能够自动学习图像中的特征,对于复杂的雨滴模式识别具有显著优势。常见的CNN架构有U-Net、ResNet、GANs等,它们在图像去雨任务中都有不俗的表现。训练过程中,损失函数的选择也会影响最终结果,如均方误差(MSE)、结构相似度指数(SSIM)或者结合两者的设计,可以帮助优化模型在保留图像细节和去除雨水之间的平衡。 此外,Rain100H数据集的使用不仅限于单一模型的训练,还可以用于模型性能的比较和新算法的验证。通过与其他公开数据集(如Rain100L、Rain12等)的对比,研究人员可以更好地评估其算法在不同条件下的性能差异,从而推动图像去雨技术的进步。 Rain100H测试数据集是图像去雨模型开发的关键资源,它为研究人员提供了一个标准化的平台,以测试和优化他们的算法。通过深入理解和充分利用这个数据集,我们有望开发出更高效、更具鲁棒性的去雨模型,进一步提升在雨天环境下的人工智能视觉应用的质量。
2025-09-17 21:41:31 240.36MB 数据集 Rain
1
FJSP的标准测试数据集,包含18个算例。数据来源:S. Dauzère-Pérès and J. Paulli. Solving the General Multiprocessor Job-Shop Scheduling Problem. Technical report, Rotterdam School of Management, Erasmus Universiteit Rotterdam, 1994.
2025-09-10 21:06:32 30KB 数据集 柔性作业车间 运筹优化
1
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学中的一个重要研究领域,它涉及到如何在满足特定约束条件下,如车辆容量、行驶距离等,最有效地规划一系列配送点的访问路径。CVRP( Capacitated Vehicle Routing Problem)是VRP的一个变种,其中考虑了车辆的载货能力限制。在这个问题中,目标是找到最小化总行驶距离的路线方案,同时确保每辆车的载货量不超过其容量。 "Christofides&Eilon Set-E(1969)" 是一个经典的数据集,用于测试和评估CVRP的解决方案。这个数据集是由两位学者,Nicos Christofides和Yehuda Eilon,在1969年提出的。他们对这个问题进行了深入研究,并提出了相关的算法和解决方案,为后续的研究提供了基准。 数据文件的命名遵循了一种特定的格式:“E-n32-k5”,其中: - "E" 表示这是Christofides和Eilon的数据集。 - "n" 后面的数字表示问题中的节点数量,即需要服务的客户点或配送点的数量。 - "k" 后面的数字代表问题允许的最大车辆数。这意味着至少需要k辆车辆来完成所有的配送任务。 这些数据集通常包含每个节点的位置信息(如坐标),以及每个节点的需求量(即货物量)。通过这些数据,我们可以构建出问题的实例,然后运用不同的算法,如贪心算法、遗传算法、模拟退火算法或者现代的深度学习方法,来寻找最优解。 在解决CVRP时,常常会用到Christofides算法,这是一种混合整数线性规划(MILP)的近似算法,它结合了图的最小生成树和最小费用最大流的思想,可以保证找到的解不劣于问题最优解的3/2倍。Eilon算法可能指的是Yehuda Eilon提出的一些早期启发式算法,它们旨在快速找到可行的解决方案,尽管可能不是全局最优解。 在实际应用中,CVRP问题广泛存在于物流配送、城市交通规划、垃圾收集等领域。通过对Christofides&Eilon Set-E-1969数据集的研究,我们可以更好地理解CVRP的复杂性,检验各种算法的性能,并进一步优化物流系统的效率。这个数据集不仅对于学术研究有价值,也是优化实践中不可或缺的工具。
2024-08-20 10:34:05 5KB 车辆路径问题 CVRP
1
CVRP问题下的VRPTW变体的测试数据集,常用来测试验证算法性能
2024-05-28 18:55:18 22KB 车辆路径 VRPTW
1
VRPTW问题Solomon标准测试数据集
2024-04-30 14:03:35 88KB 数据集
1
基于图像DIC方法的应力应变测试数据集
2024-04-01 16:40:34 93.85MB 数据集
1
FJSP的标准测试数据集,内部包含4个子数据集(edata/rdata/sdata/vdata),每个子数据集分别包含66个算例,这些子数据集由JSP标准测试数据集修改而来(ABZ/FT/LA/ORB)。数据来源:Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-shop scheduling problem with multi-purpose machines,” Operations-Research-Spektrum, vol. 15, no. 4, pp. 205–215, 1994. 其中,sdata算例中每个工序只能分配一台机器;edata算例中有少量工序可以分配给多台机器;rdata算例中许多工序都可以分配给多台机器;vdata算例中每个工序都可以分配给多台机器。
2024-03-28 19:36:09 190KB 数据集 柔性作业车间 运筹优化
1
1.本项目以Python语言和OpenCV图像处理库为基础,在Windows平台下开发答题卡识别系统,建立精确的计算机视觉算法,实现对答题卡批量识别、信息导出至Excel表格等功能,使判卷轻量化、准确化、高效化。 2.项目运行环境:Python环境、OpenCV环境、图像处理工具包、requests、 base64和xlwt模块。 3.项目包括4个模块:信息识别、Excel导出、图形用户界面和手写识别。其中基于OpenCV算法,实现对图片中选项信息、学生身份信息的检测;利用Python标准GUI库Tkinter实现图形用户界面功能;针对个人信息部分,调用智能识别API对学院、姓名进行手写文字识别,对班级、学号进行数字识别。 4.项目博客: https://blog.csdn.net/qq_31136513/article/details/132598680
2024-02-23 15:18:35 38.51MB opencv python 深度学习 图像处理
1
我的练习时自己做的yolov5测试数据集,用来检测人、猫、狗。
2023-07-01 14:13:47 53.53MB yolov5
1