汽车销量可视化分析是一种基于数据可视化技术的分析方法,旨在通过可视化方式展示汽车销售数据,帮助人们更加直观地了解市场趋势、市场份额和市场机会,以便制定更好的销售策略和市场规划 背景: 随着汽车市场的竞争日益加剧,汽车制造商和销售商需要了解市场趋势、竞争对手的销售状况、消费者购车偏好等信息,以制定更好的销售策略和市场规划。而数据可视化技术则是一种有效的手段,能够将复杂的数据信息以图形化的方式展示出来,帮助人们更好地理解和分析数据。 目的: 揭示汽车市场的销售趋势,如品牌销量变化、车型销量比例变化等。 帮助人们了解市场份额和市场机会,以制定更好的市场营销策略和销售计划。 提供数据支持,帮助汽车制造商和销售商更好地了解消费者需求和购车偏好,以设计更合适的汽车产品。 意义: 汽车销量可视化分析能够帮助汽车制造商和销售商更好地了解市场趋势和消费者需求,以便制定更好的销售策略和市场规划。 可视化分析能够直观展示数据,让人们更容易理解和分析数据,提高决策的准确性和效率。 汽车销量可视化分析能够帮助汽车企业更好地了解自身在市场中的竞争地位,并及时调整市场策略。
1
神经网络模型普遍存在过拟合问题,所以采用增加3层丢弃层避免梯度消失的问题,利用adam优化器自动优化学习率。 本文使用ReLu Activation函数激活参数特征,然后连接Batch Normalization层和Dropout层,再用Flatten层对数据进行平滑处理,最后将数据输入两个堆叠的LSTM层输出预测数据。 经过多次调整超参数后,确定丢弃率为0.15。 为该单特征LSTM模型的损失变化图。由图可见,该模型损失函数的下降速度极快,在训练次数达到三百次左右时,损失已经基本维持在0附近,并逐步趋于平稳,说明该模型能够很快地收敛到一个较优的参数状态,避免了过拟合或欠拟合的问题。该模型的整体MAPE最低时达到10.69%,整体的拟合程度较高。
2023-10-11 23:01:33 6KB lstm 神经网络
1
随着大数据时代的到来,基于网络数据的应用研究已成为热点。以品牌汽车销量预测为目标,将传统相关性分析与基于LASSO的特征选择方法相结合,选取相关品牌的网络搜索数据关键特征,而后建立了LASSO线性回归、支持向量回归和随机森林三种机器学习预测模型,并与传统ARIMA模型进行比较分析。实验结果表明,随机森林模型的预测平均误差为6.4%,比ARIMA模型降低了12.2个百分点,预测结果可为汽车企业生产规划和制定营销方案提供有效的决策支持。
2023-04-29 15:35:48 226KB 网络搜索数据
1
中国新能源汽车销量及未来发展趋势分析预测共19页.pdf.zip
1
人工智能-基于BP神经网络的我国汽车销量预测分析.pdf
2022-06-24 16:05:52 2.39MB 人工智能-基于BP神经网络的我国
截止2020年9月中国与欧洲各国新能源汽车销量情况分析.pdf
2021-12-15 17:01:31 2.86MB
2003年到2019年的汽车销量数据更新。 汽车销量.xlsx
2021-10-08 09:45:25 12KB 数据集
1
20210815-开源证券-汽车行业周报:2021H1全球电动汽车销量超250万辆,电动化率达6.3%.pdf
2021-08-16 09:05:29 1.13MB 行业
电气设备新能源行业重大事件快评:9月新能源汽车销量点评.pdf
电气设备行业研究周报:9月新能源汽车销量同比增长47%,户用光伏“630”获认可.pdf
2021-07-14 09:05:21 1.46MB 运输配置 电气行业 行业数据 数据报告