KittiBox KittiBox是用于在Kitti上训练模型FastBox的脚本的集合。 有关Fastbox的详细说明,请参见我们的。 FastBox旨在以很高的推理速度存档高检测性能。 在Kitti数据上,该模型的吞吐量为28 fps(36毫秒),是FasterRCNN的两倍以上。 尽管FastBox速度惊人,但其性能却明显优于Faster-RCNN。 任务 中等 简单 硬 速度(毫秒) 速度(fps) 快速盒 86.45% 92.80% 67.59% 35.75毫秒 27.97 更快的RCNN 78.42% 91.62% 66.85% 78.30毫秒 12.77
2023-03-10 19:58:40 21.33MB computer-vision deep-learning tensorflow detection
1
1、yolov5训练好的汽车检测模型,包含yolov5s和yolov5m两种训练好的汽车识别权重,从自动驾驶场景KITTI汽车检测数据集训练得到 2、自动驾驶场景KITTI汽车检测数据集:https://download.csdn.net/download/zhiqingAI/85208797 4、包含1000多张标注好的城市交通场景的数据集,标签格式为xml和txt两种,类别名为car,配置好环境后可以直接使用 5、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 6、采用pytrch框架,python代码
1、YOLOv3训练好的汽车检测模型,包含YOLOv3和YOLOv3_tiny两种训练好的汽车识别权重,从自动驾驶场景KITTI汽车检测数据集训练得到。 2、自动驾驶场景KITTI汽车检测数据集:https://download.csdn.net/download/zhiqingAI/85208797 3、并包含1000多张标注好的城市交通场景的数据集,标签格式为xml和txt两种,类别名为car,配置好环境后可以直接使用 4、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 5、采用pytrch框架,python代码
1、yolov5训练好的汽车检测模型,包含yolov5s和yolov5m两种训练好的汽车识别权重,从自动驾驶场景KITTI汽车检测数据集训练得到,有pyqt界面 2、pyqt界面可以 检测图片、视频和调用摄像头,有相应的选择项 3、自动驾驶场景KITTI汽车检测数据集:https://download.csdn.net/download/zhiqingAI/85208797 4、并包含1000多张标注好的城市交通场景的数据集,标签格式为xml和txt两种,类别名为car,配置好环境后可以直接使用 5、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 6、采用pytrch框架,python代码