"基于气象分析的hadoop可视化平台"是一个利用大数据处理技术和可视化工具来解析和展示气象数据的项目。这个项目特别关注了2022年的温度、空气质量、降水量和湿度这四个关键气象指标。 描述了该项目的技术栈和实现流程。项目采用了集成开发环境IDEA中的Maven进行项目构建与管理,这使得依赖管理和构建过程更加规范和高效。Maven通过定义项目的结构和依赖关系,帮助开发者自动化构建项目,减少了手动管理库文件的繁琐工作。 接下来,项目利用了Apache Hadoop这一分布式计算框架来处理大规模的气象数据。Hadoop提供了分布式文件系统HDFS,用于存储大量数据,以及MapReduce编程模型,用于并行处理数据。在这个场景下,Hadoop可能是用来对气象数据进行预处理、清洗和聚合,以便后续分析。 数据库连接方面,项目可能使用了JDBC(Java Database Connectivity)驱动,使得Java程序能够与数据库进行交互。数据可能被存储在关系型数据库中,如MySQL或PostgreSQL,用于长期存储和查询气象数据。 前端部分,项目使用了ECharts,这是一个基于JavaScript的数据可视化库,能够创建丰富的图表和图形,如折线图、柱状图等,用于直观展示气象变化趋势。ECharts与后端Java Web服务结合,通过Ajax请求获取数据,然后在浏览器端动态渲染图表,为用户提供了交互式的可视化体验。 "hadoop"表明该项目的核心在于使用Hadoop处理和分析大量气象数据,这通常涉及到大数据的分布式存储和计算。 【文件列表】中的文件包括不同日期的屏幕截图,可能展示了项目中不同时间点的界面和结果,例如数据的加载、处理过程或可视化效果。Excel文件(如tb_rainfall.xlsx、temperature.xlsx等)则很可能包含了原始的气象数据,每一列代表特定的气象指标,每一行对应一个观测点或时间点的数据。而db_开头的文件可能与数据库表结构或导入数据有关,例如db_humidity.xlsx可能包含了湿度数据的导入模板。 这个项目展示了如何使用现代IT技术,如Hadoop、Maven、ECharts等,从数据收集、处理、存储到展示的全链路处理气象数据,并提供了用户友好的可视化界面,有助于气象学家和决策者理解气候变化和做出相应预测。
2024-12-15 19:21:52 11.22MB hadoop
1
气象数据分析和可视化中,Python已经成为了一种非常强大的工具,尤其在绘制色斑图方面。色斑图是一种常用于展示二维数据分布的图形,能够直观地反映出气象参数(如降水、温度等)的空间变化。本程序是专为气象领域设计的Python色斑图绘制程序,能够帮助研究人员和气象工作者快速、高效地生成专业级别的气象分布图。 我们要了解Python中的几个关键库在色斑图绘制中的作用: 1. **Matplotlib**:作为Python最基础的绘图库,Matplotlib提供了一系列函数用于创建各种类型的图表,包括色斑图。通过`matplotlib.pyplot`模块中的`pcolor`或`imshow`函数,我们可以轻松地绘制出二维的色斑图。 2. **Numpy**:处理数值计算的利器,Numpy库能帮助我们处理气象数据,如计算平均值、标准差等统计量,以及进行数据的重采样和平滑处理。 3. **Cartopy**:这是一个专门用于地理坐标系统的Python库,可以方便地绘制地图,并在地图上添加经纬网格、边界、城市标记等地理元素。 4. **Pandas**:数据处理框架,用于读取、清洗和组织气象数据,如CSV、NetCDF等格式的数据文件。 5. **Seaborn**:基于Matplotlib的统计图形库,提供了更高级的调色板和图例设置,使得色斑图的颜色分布更加美观且具有科学性。 在描述中提到的"降水分布色斑图"和"温度分布色斑图"的绘制过程中,我们需要做以下步骤: 1. **数据准备**:使用Numpy和Pandas读取并处理气象数据,将其转化为适合绘图的二维数组。 2. **设置地图投影**:利用Cartopy库,根据需要选择合适的地图投影方式,如Mercator、Lambert Conformal等。 3. **绘制色斑图**:用Matplotlib的`pcolor`或`imshow`函数绘制色斑图,根据数据的大小和分布自动生成颜色梯度。 4. **添加图例**:设置图例以表示颜色与气象参数的对应关系,可以使用`matplotlib.colorbar`函数生成颜色条。 5. **标注城市名称**:使用Cartopy的`add_feature`函数添加城市标记,可能需要额外的城市地理信息数据支持。 6. **添加标题和轴标签**:使用Matplotlib的`title`, `xlabel`, `ylabel`函数为图添加标题和坐标轴标签。 7. **保存和显示图像**:通过`savefig`函数将图像保存为PNG或其他图像格式,`show`函数则用于在屏幕上显示图像。 在提供的文件名"PicHttpService"中,虽然没有明确的扩展名,但通常此类服务可能涉及图像的HTTP请求、下载或者上传,可能是用来获取或展示色斑图的HTTP接口服务。在实际应用中,可以结合这样的服务实现色斑图的网络交互,例如动态更新气象数据并实时更新图像,或者将生成的图像分享到网页上。 "气象领域python色斑图绘制程序"是一个综合运用了Python数值计算、数据处理和图形绘制能力的工具,它可以帮助气象学者和从业人员更好地理解和展示气象数据,提高分析和报告的效率。通过熟练掌握这些技术,可以在气象研究、天气预报、气候模型等领域发挥重要作用。
2024-09-24 17:19:37 63.37MB python
1
农业原始数据集 1.气象数据集 字段说明 编号 日期 从2014年 ~2024年 共 10年的数据 当日最低温度 当日最高温度 湿度 取值范围 0-100 降水量 单位:毫升 风速 单位:米/秒 日照时数 小时 天气状况 晴天、雨天、阴天 数据格式 csv格式 2.农作物生长数据集 字段说明 编号 作物类型 包括: 小麦、玉米、水稻、大豆、高粱、油菜、花生、棉花 种植日期 作物开始种植的日期, 从2014年 ~2024年 共 10年的数据 收割日期 作物成熟后进行收割的日期 从2014年 ~2024年 共 10年的数据 生长期 从种植到收割的时间长度,以天为单位 产量 每公顷土地的作物产量,单位为吨 日照时长 作物生长期内每天的平均日照时长,单位为小时 降水量 作物生长期内的年降雨量,单位
2024-09-24 15:33:52 2.83MB 数据集
1
"Python气象应用编程.pptx" 《Python气象应用编程》是一本实用的气象应用编程指南,旨在帮助气象学专业人士和爱好者使用 Python 进行气象数据分析、可视化和模型构建。该书涵盖了使用 Python 进行气象应用编程的各个方面,从基础到高级,从理论到实践。 Python 基础 Python 是一种通用的高级编程语言,具有简单易学、易读易懂、可扩展性强、开源等特点。Python 编程语言可以用于气象数据的处理、分析和可视化,并且可以与其他编程语言(如 C++、Java 等)进行交互。 气象数据解析 气象数据通常包含大量的时间和空间数据,需要使用高性能计算和并行计算技术来进行处理和分析。Python 可以与这些技术进行无缝集成,并提供了许多用于高性能计算的库和框架。例如, NumPy、pandas、matplotlib、cartopy、xarray 等库可以帮助气象学家更好地处理、分析和可视化气象数据。 数据可视化和图形绘制 在获取和处理完气象数据后,Python 可以用于数据可视化和图形绘制。例如,使用 matplotlib、Seaborn 和 Plotly 等库可以进行各种图表和图形的绘制,包括折线图、散点图、柱状图等值线图和三维图形等。Python 还可以用于交互式可视化,以便更好地探索和理解气象数据。 气象模型构建 Python 可以用于气象模型构建,例如,线性回归模型、神经网络和支持向量机等。Python 提供了许多用于模型构建的库和框架,例如,scikit-learn、TensorFlow 等。气象学家可以使用 Python 构建这些模型,并对模型的性能进行评估和比较。 气象应用编程 Python 是一种跨平台编程语言,可以运行在 Windows、Linux、MacOS 等操作系统上。气象学家可以使用 Python 来编写跨平台的代码和应用程序,以便在不同的操作系统上进行部署和使用。Python 还可以用于气象教育和培训,例如,制作气象学课件、实验平台等。 气象应用实践 气象学家需要掌握一些气象学基础知识,例如,气候学、大气科学、海洋科学等,这些知识可以帮助他们更好地理解气象数据和应用场景。在气象应用中,需要考虑到气象数据的误差和不确定性,例如,观测误差、模型误差、数据缺失等。Python 可以提供一些工具和技术来估计和处理这些误差和不确定性。 《Python 气象应用编程》是一本非常实用的气象应用编程指南,适合于气象学专业人士和爱好者阅读。这本书涵盖了使用 Python 进行气象应用编程的各个方面,从基础到高级,从理论到实践。通过阅读这本书,读者将学会如何使用 Python 进行气象数据分析、可视化和模型构建,并能够更好地理解和探索气象现象和趋势。
2024-09-19 15:25:36 1.05MB
1
python读取气象nc数据
2024-07-21 17:09:20 23.77MB python
1
气象研究必备pip库:netCDF4-1.5.8-cp37-cp37m-win-amd64
2024-07-05 11:05:14 2.87MB python
1
1. 灵活运用LabVIEW的编程,设计出一套温度/湿度/气压等关键气象参数的采集监测系统。各个子VI独立设计,包括数据的自动采集、处理、显示和存储等功能。 2. 本系统采用随机数产生温度/湿度/气压等关键气象参数信号,系统能够监测、传输及处理等这些信号,同时还具有报警、显示及存储等功能。 3. 此外,非常鼓励同学们创新性地添加与气象有关的参数监测及其他特殊功能,并用LabVIEW编程实现。 南信大无脑下,主打一个免费。
2024-06-26 13:17:16 22KB 编程语言
1
MeteosatTool是一个程序,用于可视化和处理来自Meteosat第二代(MSG)地球静止气象卫星的数据,以及SAFNWC,NoWCasting的卫星应用设施和超短距离预报软件包的输出数据
2024-05-31 12:56:40 45.89MB 开源软件
1
基于python机器学习的全国气象数据采集预测可视化系统 毕业设计 预测模型+爬虫(包含文档+源码+部署教程) 系统功能主要包括数据采集功能、数据可视化功能、数据预测功能、用户登录与注册功能、数据管理功能。其中数据采集功能包含全国实时天气数据采集和上海历史天气数据采集。数据可视化功能包含全国综合天气数据可视化、全国各城市天气数据可视化以及上海历史天气数据可视化。数据预测功能指的是气象分析预测;数据管理指的是多维度的数据管理,包含用户数据、公告数据、全国气象数据管理等。 该系统可以自动地从中国天气网获取实时天气数据,并将数据清洗、存储在MYSQL数据库中。同时,通过ECharts技术实现数据可视化,在大屏幕上实现了全国综合天气数据可视化,以及全国各城市和上海历史天气数据的可视化。其次,系统还实现了机器学习预测天气模型构建与训练,使用scikit-learn、pandas、numpy等工具实现多元线性回归模型。预测模型可以对天气趋势进行分析,提供预测结果。此外,该系统还实现了用户登录和注册功能,以及数据管理模块,用于管理用户数据、公告数据、全国天气数据和上海历史气象数据。
2024-04-07 19:33:49 82.06MB python 机器学习 毕业设计 天气数据
1
数据详情 中国区域(含港澳台)的气象观测站点数据, 数据格式ISD-Lite,是简化的ISD(Integrated Surface Data)数据。每列固定宽度,非常易于程序解析,也可直接当做“空格分隔的CSV”使用。具体每列的含义及数据格式见isd-lite-format.txt,有详细解释。时间是GMT时间。站点ID和站点名、经纬度的对应关系见isd-history.csv,该列表各列含义见isd-history.txt文件开头。isd-history.csv里包含了所有用到过的站点,包括大量现在已经不在使用的。经纬度是WGS-84坐标系。国家ID列表见country-list.txt。本站数据只包含了国家ID为CH、HK、MC、TW的站点。 数据属性 数据名称:中国区域(含港澳台)的气象观测站点数据 数据时间:2022 空间位置:全国 数据格式:txt和EXCEL 坐标系:WGS1984
2024-04-07 16:23:52 623.5MB 气象数据
1