基于遗传算法(GA)优化长短期记忆网络(GA-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-27 16:14:12 28KB 网络 网络 matlab lstm
1
基于灰狼算法(GWO)优化门控循环单元(GWO-GRU)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2020及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-06 19:57:03 27KB
1
基于粒子群算法优化长短期记忆网络(PSO-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:35 26KB 网络 网络 matlab lstm
1
基于粒子群算法(PSO)优化门控循环单元(PSO-GRU)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2020及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-07 14:13:28 26KB
1
为改善电阻抗成像逆问题的不适定性,通常采用Tikhonov正则化算法来求得适当的解。正则化参数对重建图像的质量和计算速度影响较大。笔者提出了一种基于残差范数和解范数乘积的优化方法(PRS)求取电阻抗成像的正则化参数。为验证该方法的有效性,笔者针对不同的目标大小、目标位置、目标电导率、目标数目以及不同程度的噪声分别进行了重建图像的仿真实验和水槽实验。结果表明:这种优化方法可以快速找到相对最优的正则化参数,且具有良好的抗噪性能。与传统的L曲线方法相比,提高了图像重建质量。
2022-11-10 10:11:30 7.44MB 自然科学 论文
1
自适应Tikhonov正则化参数估计方法
2021-09-30 22:20:28 214KB 研究论文
1
本文档是关于正则化参数λ或者α如何选择,我自己总结的
2021-09-02 23:14:22 81KB 正则化参数
1
一个简易的正则化参数求取matlab code,很好用,很方便。
2021-05-23 16:50:05 5KB 正则化参数
1
基于双正则化参数的在线字典学习超分辨率重建
2021-03-03 10:05:40 336KB 研究论文
1
基于双正则化参数的在线字典学习超分辨率重建
2021-03-03 10:05:38 384KB 研究论文
1