《高精度低功耗:基于65nm工艺和1.2V电源电压的Pipeline SAR ADC模数转换器设计指南》,12bit 100MHz pipelined SAR ADC模数转器 设计 65nm工艺,电源电压1.2V,ENOB=11.6 有详细教程原理文档 有工艺库,直接导入自己的cadence 有导入教程,你搞不定我可以帮你导入 结构: 栅压自举开关 CDAC 两级动态比较器 第一级6位SAR ADC 余量放大器 第二级8位SAR ADC 同步和异步SAR logic都有 原理仿真讲解,文档里都有 适合入门pipelined ADC的拿来练手,大佬勿扰 ,12bit 100MHz SAR ADC模数转换器; 65nm工艺; 电源电压1.2V; ENOB=11.6; 详细教程原理文档; 工艺库导入; 栅压自举开关; CDAC; 两级动态比较器; 6位SAR ADC; 余量放大器; 8位SAR ADC; 同步和异步SAR logic; 原理仿真讲解。,基于12位100MHz的Pipeline SAR ADC模数转换器设计:细节解析与导入教程
2025-11-26 10:57:03 884KB 正则表达式
1
AD9245模数转换器是一款高性能的14位模数转换器,具备多种特点和应用领域,本文将详细解读其性能参数和应用场景。 性能参数方面,AD9245模数转换器的工作电压为单电源3.3V,其动态性能指标在20 MSPS时信噪比(SNR)为73.2 dB,无杂散动态范围(SFDR)为83 dBc。在更高的采样率,如65 MSPS时,其功耗为380 mW,而在165 MSPS时则增加至165 mW。它的差分输入具有500 MHz的带宽,这意味着它能够处理高速的模拟信号。AD9245还内置了参考源和采样保持电路,确保了信号采集的准确性。 在模拟输入方面,AD9245提供灵活的模拟输入范围,可以从1 V p-p到2 V p-p,偏移可以设置为±0.5 LSB。数据格式支持二进制或二进制补码,使得AD9245适用范围更广。 时钟管理方面,AD9245具备时钟占空比稳定器,能够使内部时钟在各种不同占空比的情况下保持稳定性能。这对于高速和精确的数据采样至关重要。输出缓冲器提供了±0.5 LSB的差分非线性(DNL)性能,这对于保证数字信号的精确转换至关重要。 AD9245的应用领域非常广泛。它在通信接收机中的中频(IF)采样中表现优异,特别适用于CDMA、WCDMA、CDMA-One、CDMA-2000和TDS-CDMA等系统。由于其低功耗和低电压特性,AD9245也非常适合于便携式设备,如电池供电的仪器、手持示波表、频谱分析仪等。 此外,AD9245还非常适合于那些对功耗敏感的军事应用,比如无人机(UAV)的载荷以及各种军事雷达和电子战设备。它的高精度和高动态范围使其成为医疗成像设备、工业自动化和高精度测试仪表的首选。 AD9245模数转换器因其高速率、高精度、低功耗等特点,成为了在高性能数据采集系统中不可或缺的一环。它的应用不仅涵盖了通信领域,还扩展到了医疗、军事和测试设备等多个重要领域。
2025-09-17 16:02:39 1.64MB
1
MAX11120-MAX11128是12位/10位/8位外部参考和业界领先的1.5MHz,全线性带宽,高速,低功耗,串行输出连续逼近寄存器(SAR)模数转换器(adc)。MAX11120-MAX11128包括内部和外部时钟模式。这些设备在内部和外部时钟模式下都具有扫描模式。内部时钟模式具有内部平均以提高信噪比。外部时钟模式采用SampleSe技术,这是一种用户可编程的模拟输入通道序列器。SampleSet方法为多通道应用提供了更大的测序灵活性,同时减轻了微控制器或DSP(控制单元)通信开销。 之前使用过不少模数转换器ADC,如TI、ADI的;这是第一次使用这个美信集成的模数转换器。本来是用来采集一个光电传感器输出的信号用来检测液体位置使用,同时也用来检测温度使用。经过一周的摸索才完全掌握使用模式和方法,在对这个芯片的配置和数据读取过程中,我也在网上进行大量搜索没有发现可以参考的;然后我也使用当下热门的人工智能Deepseek和豆包进行了提问编程,也没能完全解决问题,最后通过反复查看书册解决。所以将用法写下来,给AI提供素材。
2025-08-11 14:08:40 3.55MB
1
"高速模数转换器AD9225存储电路设计" 1. 高速模数转换器AD9225的结构和应用: AD9225是一种高速模数转换器芯片,具有单片、单电源供电、12位精度、25Msps采样率等特点。它采用带有误差校正逻辑的四级差分流水结构,以保证在25Msps采样率下获得精确的12位数据。 2. AD9225的输入和输出: AD9225的输入包括时钟输入、模拟输入和数字输出。时钟输入用于控制内部所有的转换,采样是在时钟的上升沿完成。在25Msps的转换速率下,占空比应保持在45%~55%之间。模拟输入引脚是VINA和VINB,绝对输入电压范围由电源电压决定。数字输出采用直接二进制码输出12位的转换数据,并有一位溢出指示位。 3. AD9225的参考电压和量程的选用: AD9225的参考电压VREF决定了AD9225的量程,即满刻度量程=2×VREF。VREF的值由SENSE引脚确定,可以是1.0 V到2.0 V之间的任意值,量程是0~4 V或0~2 V。 4. AD9225的存储方案设计: 在高速数据采集电路的实现中,有两个关键的问题:一是模拟信号的高速转换;二是变换后数据的存储及提取。AD9225的采样速度可达25Msps,完全可以满足大多数数据采集系统的要求。常见的存储方案有分时存储方案、双端口存储方案和先进先出存储方案。 5. 分时存储方案: 分时存储方案的原理是将高速采集到的数据进行分时处理,通过高速锁存器按时序地分配给N个存储器。虽然电路中增加了SRAM的片数,但使存储深度增加,用低价格的SRAM构成高速数据存储电路,获得较高的(单位速度×单位存储深度)/价格比。 6. 双端口存储方案: 双端口存储器的特点是,在同一个芯片里,同一个存储单元具有相同的两套寻址机构和输入输出机构,可以通过两个端口对芯片中的任何一个地址作非同步的读和写操作,读写时间最快达到十几ns。双端口存储器方案适用于小存储深度、数据实时处理的场合。 7. 先进先出存储方案: 先进先出存储器的同一个存储单元配备有两个口:一个是输入口,只负责数据的写入;另一个是输出口,只负责数据的输出。先进先出存储器方案适用于小存储深度、数据需实时处理的场合。
2025-07-12 14:56:48 161KB 高速模数转换器 存储电路
1
模数转换芯片MCP3421A0T-E-CH是一款具备8位ΔΣ模数转换功能的单通道低噪声、高精度模数转换器,它内置带有I²C接口和板载参考电压。该芯片能够处理差分输入信号,通过I²C兼容的串行接口,可实现单电源供电2.7V至5.5V的操作环境。MCP3421A0T-E-CH的参考电压固定为4.096V,板载电容提供了高精度的基准电压。 该芯片采用带有自校准功能的内部偏移和增益,能够实现高精度的模拟信号转换。用户可以编程调整数据速率,以优化信号转换过程中的分辨率和采样率,从而实现对信号的高分辨放大。此外,MCP3421A0T-E-CH支持可编程增益放大器(PGA),这允许设备根据不同的应用需求,对增益进行编程配置,从而优化整体性能。 MCP3421A0T-E-CH的差分输入范围根据单端基准电压为±2.03468V。它还具备可编程数据速率选项,包括1x、2x、4x或8x,数据速率可以根据转换过程中的需求进行选择。该设备的积分非线性(INL)为FSR的10ppm,确保了高精度转换。另外,MCP3421A0T-E-CH支持连续模式和单次模式的转换方式,能够以较高的分辨率和采样率进行信号采集。 MCP3421A0T-E-CH的输入信号可以通过两线I²C串行接口进行读取,确保与多种微控制器和其他数字逻辑设备兼容。此外,该设备还提供了板载振荡器和滤波器,支持高达240样本/秒(在1x增益时)的采样率。用户可以通过编程来选择不同的数据输出速率,以便获得最适合当前应用需求的转换结果。 MCP3421A0T-E-CH芯片的灵活性和高性能使其适合于多种应用场合,例如便携式医疗设备、温湿度传感器、精准测量仪器以及需要高精度数据采集的其他应用。
2025-07-07 11:04:41 1.55MB
1
《模拟电路与数字电路教程》是一份非常实用的教育资源,主要涵盖了模拟电路和数字电路的基础知识。这两部分是电子工程领域的基石,对于学习电子技术、通信工程、自动化控制等相关专业的人来说,是必不可少的学习资料。 让我们深入了解一下模拟电路。模拟电路处理的是连续变化的信号,如音频、电压或电流等。在模拟电路教程中,你可能会学到以下几个核心概念: 1. **基本元件**:电阻、电容、电感是模拟电路中的三大基本元件,它们决定了电路的电压、电流关系。电阻限制电流,电容储存电荷,电感储存磁能。 2. **欧姆定律**:这是理解电路工作原理的基础,它描述了电压、电流和电阻之间的关系。 3. **放大器**:运算放大器是模拟电路中的关键部件,常用于信号放大、滤波和比较等应用。 4. **交流电路与直流电路**:交流电路涉及正弦波形的电压和电流,而直流电路则涉及恒定的电压和电流。两者在分析方法上有所不同。 5. **滤波器**:模拟电路中的滤波器可以设计为低通、高通、带通或带阻,用于筛选特定频率范围的信号。 6. **振荡器**:模拟电路中的一些电路能够产生持续的、自我维持的电信号,如LC振荡器和RC振荡器。 接下来,我们转向数字电路。数字电路处理的是二进制信号,即0和1。在这个领域,你将学习到: 1. **逻辑门**:与门、或门、非门、异或门等是数字电路的基本单元,它们通过组合实现复杂的逻辑功能。 2. **布尔代数**:这是分析和设计数字电路的数学工具,用于简化逻辑表达式。 3. **组合逻辑电路**:这些电路的输出仅依赖于当前输入,不具有记忆功能,如编码器、译码器和数据选择器。 4. **时序逻辑电路**:与组合逻辑不同,时序逻辑电路具有记忆功能,如寄存器和计数器,它们的输出不仅取决于当前输入,还与之前的状态有关。 5. **微处理器和微控制器**:现代电子设备的核心,它们执行计算和控制任务,集成了CPU、内存和外围接口。 6. **数字信号处理**:数字电路在音频、视频和通信系统中的应用,包括采样、量化、编码等。 尽管这两个教程的内容可能不多,但它们都包含了模拟电路和数字电路的基本原理和设计方法,适合初学者快速掌握基础。通过深入学习这两部分,你将具备分析、设计和解决实际电路问题的能力。无论是为了学术研究还是职业发展,这都将是一个坚实的基础。
2025-06-23 09:02:05 1.51MB 模拟电路 数字电路
1
《基于Verilog-A的SAR ADC及其模数转换与混合信号IC设计教程与实战手册:含现成常用器件代码》,Verilog-A 学习资料 SAR ADC 模数转器 混合信号IC设计 模拟IC设计 包含现成常用的Verilog-A器件代码,可以直接拿来用 Verilog-A 一种使用 Verilog 的语法来描述模拟电路的行为 ,Verilog-A; SAR ADC; 模数转换器; 混合信号IC设计; 模拟IC设计; 器件代码,《Verilog-A教程:SAR ADC与混合信号IC设计模数转换模拟》
2025-05-09 16:20:07 661KB 哈希算法
1
24位、4通道模数转换、数据采集系统概述: 在过程控制和工业自动化应用中,±10 V满量程信号非常常见;然而,有些情况下,信号可能小到只有几mV。用现代低压ADC处理±10 V信号时,必须进行衰减和电平转换。但是,对小信号而言,需要放大才能利用ADC的动态范围。因此,在输入信号的变化范围较大时,需要使用带可编程增益功能的电路。 该电路设计是一种灵活的信号调理电路,用于处理宽动态范围(从几mV p-p到20 V p-p)的信号。该电路利用高分辨率模数转换器(ADC)的内部可编程增益放大器(PGA)来提供必要的调理和电平转换并实现动态范围。 该电路包含一个ADG1409多路复用器、一个AD8226仪表放大器、一个AD8475差动放大器、一个AD7192 Σ-Δ型ADC(使用ADR444基准电压源)以及 ADP1720稳压器。只需少量外部元件来提供保护、滤波和去耦,使得该电路具有高集成度,而且所需的电路板(印刷电路板[PCB])面积较小 适合宽工业范围信号调理的灵活模拟前端电路: 如上所示电路解决了所有这些难题,并提供了可编程增益、高CMR和高输入阻抗。输入信号经过4通道ADG1409 多路复用器进入 AD8226低成本、宽输入范围仪表放大器。AD8226低成本、宽输入范围仪表放大器。AD8226提供高达80dB的高共模抑制(CMR)和非常高的输入阻抗(差模800ΩM和共模400ΩM)。宽输入范围和轨到轨输出使得AD8226可以充分利用供电轨。 24位、4通道模数转换、数据采集系统附件内容截图:
2024-11-07 17:06:25 2.76MB 电路方案
1
AD AD7276 verilog 驱动 程序 Spartan 6, K7亲测通过
2024-08-08 17:02:25 4KB AD7276 verilog 模数转换
1
研究了一种新型的32位高性能微控制器MC68HC376,提出了一种基于MC68HC376的应用系统设计方案,对MC68HC376比较有特色的部分做了深入的开发和讨论,通过一种实际产品验证了该方案的可行性。
1