Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:39:15 2.67MB matlab
1
《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。
2024-08-08 14:48:56 1.11MB
1
辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。,辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。辛几何模态分解SGMD分解,附案例数据 可直接运行。 附案例数据 可直接运行。
2024-05-23 16:02:49 566KB 信号分解
1
Matlab实现SVMD逐次变分模态分解时间序列信号分解(完整源码和数据) 1.Matlab实现SVMD逐次变分模态分解时间序列信号分解,运行主程序main即可,数据为一维时间序列信号数据。 2.赠送一个SVMD分解重构测试案例,运行test_svmd得到结果。 3.程序语言为matlab,运行环境matlab2018b及以上。 4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 5.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 6.作者介绍:某大厂资深算法工程师,从事Matlab、Python算法仿真工作8年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。
2024-05-21 10:54:29 887KB matlab
实现变分模态分解,采用包络熵作为各模态分量的能量计算值
2024-05-18 14:26:03 4KB 变分模态分解 vmd
1
ICEEMDAN(改进的自适应噪声完备集合经验模态分解) ICEEMDAN的主要目的是解决CEEMDAN中残留噪声和伪模态的问题。本篇是继EEMD、CEEMD、CEEMDAN后的信号分解方法。,ICEEMDAN(改进的自适应噪声完备集合经验模态分解) ICEEMDAN的主要目的是解决CEEMDAN中残留噪声和伪模态的问题。本篇是继EEMD、CEEMD、CEEMDAN后的信号分解方法。
2024-03-22 10:56:15 61KB 信号处理
1
针对传统煤矿电机滚动轴承故障诊断信号噪声大和诊断效率低等问题,提出了一种基于经验模态分解和形态滤波的轴承故障诊断方法。仿真结果验证了所提方法的可行性和有效性。
2023-12-27 15:29:32 216KB 经验模态分解 形态滤波 故障诊断
1
图像在采集、获取和传输过程中往往夹杂着噪声,针对几种常用方法去噪效果不理想,提出了一种新的图像去噪方法。此方法通过二维变分模态分解将图像分解为一系列不同中心频率的子模态,保留其低频模态,并对其进行自适应中值滤波处理,从而得到其去噪后的图像。实验结果表明,与其他几种常用的去噪方法相比,该方法在滤除噪声的同时,能较好地保留图像的边缘细节,图像也获得了较好的视觉效果,此外客观评价参数也得到明显的改善,随着噪声强度加大去噪效果愈明显。
1
基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行,基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行,基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行
2023-11-21 09:55:56 26KB 信号分解
1
1. Matlab实现VMD变分模态分解(完整源码和数据) 2. 单列数据输入,多模态输出,数据分解算法 3. 案例数据为测试数据,无实际含义 4. 下载整个文件夹后直接运行main即可 5. Excel数据,要求 Matlab 2018B及以上版本 6. 频谱图与其他代码连接:https://docs.qq.com/sheet/DT1hWRkpoVVJ3TGZv?tab=BB08J2
2023-11-17 20:10:02 47KB matlab
1