近年来,恶意软件呈现出爆发式增长势头,新型恶意样本携带变异性和多态性,通过多态、加壳、混淆等方式规避传统恶意代码检测方法。基于大规模恶意样本,设计了一种安全、高效的恶意软件分类的方法,通过提取可执行文件字节视图、汇编视图、PE 视图3个方面的静态特征,并利用特征融合和分类器集成学习2种方式,提高模型的泛化能力,实现了特征与分类器之间的互补,实验证明,在样本上取得了稳定的F1-score(93.56%)。
1
为了解决在复杂背景以及人流密集且互相遮挡的场景下, 对人流密度进行估计精度低的问题, 提出了基于YOLOv3增强模型融合的方法进行人流密度估计. 首先将数据集分别进行头部标注和身体标注, 生成头部集和身体集. 然后用这两个数据集分别训练两个YOLOv3增强模型YOLO-body和YOLO-head, 最后使用这两个模型在相同的测试数据集上推理, 将其输出结果进行极大值融合. 结果表明基于YOLOv3增强模型融合的方法, 与原始目标检测方法和密度图回归的方法相比精度提高了4%, 且具有较好的鲁棒性.
1
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码。 实现功能: 基础功能利用pytorch实现图像分类 包含带有warmup的cosine学习率调整 warmup的step学习率优调整 多模型融合预测,加权与投票融合 利用flask + redis实现模型云端api部署(tag v1) c++ libtorch的模型部署 使用tta测试时增强进行预测(tag v1) 添加label smooth的pytorch实现(标签平滑)(tag v1) 添加使用cnn提取特征,并使用SVM,RF,MLP,KNN等分类器进行分类(tag v1)。 可视化特征层。 转载:https://github.com/lxztju/pytorch_classification
2023-03-11 16:54:10 3.03MB 预测模型 图像分类 pytorch
1
yolov5口罩检测,此模型已融合了attention机制,best.pt放在主目录下,考虑到训练时间使用的yolov5x,mAp96%左右,能够较高的识别人脸是否佩戴口罩,可以修改损失函数继续进行优化
2022-10-29 17:05:14 18.13MB 深度学习 目标检测 yolov5 transformer
1
模型包含xgboost,lightgbm等模型, 最后结果进行了stacking模型融合,预测模型 包含数据集、代码,以及运行结果 可以学到数据接入、特征工程、模型训练,模型预测,模型融合以及结果输出,代码基于python,储存于jupyter notebook
2022-10-28 17:05:16 745KB python 机器学习 模型融合 树模型
1
为了提高光伏发电输出功率的预测精度和可靠性,本文提出一种基于Stacking模型融合的光伏发电功率预测方法.选取某光伏电站温度、湿度、辐照度等历史实测数据为研究对象,在将光伏发电功率数据进行特征交叉以及基于模型的递归特征消除法进行预处理和特征选择的基础上,以XGBoost、LightGBM、RandomForest 3种机器学习算法作为Stacking集成学习的第一层基学习器,以LinearRegression作为第二层元学习器,构建了多个机器学习算法嵌入的Stacking模型融合的光伏发电功率预测模型.预测结果表明,该方法的R2、MSE分别达到了0.9874和0.1056,相较于单一的机器学习模型,预测精度显著提升.
2022-08-15 21:06:50 1.99MB 光伏发电 Stacking 模型融合 基学习器
1
基于卷积和循环神经网络模型融合的股票开盘价预测研究.docx
2022-07-15 10:01:17 26KB 互联网
1
先运行change.py增加特征维度,再运行baseline.py 其中d_train_20180102.csv 有5642行 d_train_20180102_add.csv 有6642行,加了A榜的1000行 如果要看A榜的线上成绩,则把baseline.py里边的train test 和ol改一下路径即可
2022-06-22 15:40:45 11.44MB Python
1
为纳滤波和TV算法模型融合的去噪效果
2022-06-03 09:09:21 186KB 算法 文档资料
基于卷积和循环神经网络模型融合的股票开盘价预测研究.docx
2022-06-03 09:00:09 26KB 互联网