内容概要:本文详细介绍了基于虚拟同步发电机(VSG)的模块化多电平换流器(MMC)在Simulink中的仿真过程及其性能分析。主要内容包括VSG控制算法的设计与实现,特别是有功和无功下垂控制、PIR环流抑制控制器的应用以及均压算法的优化。文中展示了具体的MATLAB和C语言代码片段,解释了各个控制环节的工作原理和技术细节。通过实验验证,该系统在电网电压骤降时能够快速响应,提供稳定的无功支持,同时保持较低的电流和电压总谐波畸变率(THD)。 适合人群:从事电力电子、电力系统自动化领域的研究人员和工程师,尤其是对MMC和VSG技术感兴趣的读者。 使用场景及目标:适用于新能源场站的黑启动场景和其他需要高精度、快速响应的电力控制系统。目标是提高系统的稳定性和效率,减少谐波干扰,确保电力传输的质量。 其他说明:文中提供了详细的仿真参数配置表和部分实测数据,供有兴趣深入研究的读者参考。此外,作者还分享了一些实用的经验和技巧,如虚拟惯量的选择、谐振频率的设定等。
2025-07-28 16:32:14 5.67MB
1
基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型研究:应用NLM调制与二倍频环流抑制策略的电压均衡控制,基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型及优化策略研究:从控制方法到应用效果验证分析,模块化多电平流器(MMC)双闭环定交流电压仿真模型,离网逆变工况,交流电压外环,电流内环控制。 最近电平逼近(NLM)调制,二倍频环流抑制,排序法子模块电压均衡。 子模块数量18个,直流侧母线电压36KV,交流侧相电压最大值18kV,额定功率30MW,控制效果良好。 联系即可发出,matlab版本可降,默认版本为2022a。 主页所有模型均为,请认准 模块化多电平流器(MMC)。 整流器。 PI控制。 双闭环。 ,1. 模块化多电平换流器(MMC); 2. 双闭环定交流电压仿真模型; 3. 离网逆变工况; 4. 交流电压外环; 5. 电流内环控制; 6. 最近电平逼近(NLM)调制; 7. 二倍频环流抑制; 8. 排序法子模块电压均衡; 9. 子模块数量; 10. 直流侧母线电压; 11. 交流侧相电压最大值; 12. 额定功率; 13. 控制效果
2025-07-23 20:21:26 654KB rpc
1
基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型技术研究与应用展示,基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型设计与优化分析,模块化多电平流器(MMC)双闭环定交流电压仿真模型,离网逆变工况,交流电压外环,电流内环控制。 最近电平逼近(NLM)调制,二倍频环流抑制,排序法子模块电压均衡。 子模块数量18个,直流侧母线电压36KV,交流侧相电压最大值18kV,额定功率30MW,控制效果良好。 联系即可发出,matlab版本可降,默认版本为2022a。 主页所有模型均为,请认准 模块化多电平流器(MMC)。 整流器。 PI控制。 双闭环。 ,核心关键词: 模块化多电平换流器(MMC); 双闭环定交流电压仿真模型; 离网逆变工况; 交流电压外环; 电流内环控制; 最近电平逼近(NLM)调制; 二倍频环流抑制; 排序法子模块电压均衡; 子模块数量; 直流侧母线电压; 交流侧相电压最大值; 额定功率; 控制效果; Matlab版本; PI控制。,基于模块化多电平换流器(MMC)的离网逆变工况双闭环仿真模型
2025-07-23 20:11:25 2.74MB scss
1
模块化多电平换流器MMC双端MMC-HVDC系统:柔性直流输电技术与最近电平逼近调制实现直流侧电压及功率控制策略,模块化多电平换流器MMC与双端MMC-HVDC柔性直流输电系统:320kV直流侧电压与有功无功控制策略,模块化多电平流器 MMC 双端MMC-HVDC,柔性直流输电系统。 直流侧电压320kV,交流侧线电压有效值166kV,100个子模块,采用最近电平逼近调制。 送端流站控制输出有功功率和无功功率,受端流站控制直流侧电压。 ,模块化多电平换流器(MMC); 双端MMC-HVDC; 柔性直流输电系统; 直流侧电压320kV; 交流侧线电压有效值166kV; 子模块数量100; 最近电平逼近调制; 送端换流站控制; 受端换流站控制。,基于模块化多电平MMC技术的双端MMC-HVDC柔性直流输电系统控制策略研究
2025-04-16 10:40:04 2.7MB kind
1
D-Q坐标系下模块化多电平换流器的交流阻抗模型研究.docx
2023-02-02 18:11:55 2.66MB
根据直流故障电流切断位置不同,首先分析基于交流断路器、直流断路器和模块化多电平换流器子模块拓扑的3种故障抑制技术方案及其特点。然后从切断故障电流角度出发,利用双向可控开关对半桥拓扑进行改进设计以抑制直流故障,并与传统半桥子模块相结合构成混合双子模块拓扑以降低单位电平成本和运行损耗。同时研究在闭锁期间混合双子模块内部电容不均衡充电所导致的电容电压不平衡问题及其应对策略。最后在PSCAD/EMTDC中搭建两端仿真模型,对混合双子模块拓扑直流故障抑制特性及电容电压控制策略进行仿真验证。
1
为解决模块化多电平换流器(MMC)在采用载波移相调制时的电容电压平衡问题,提出一种基于载波交换的平衡方法。该方法位于调制层,不改变子模块的调制波,既不影响输出电压波形,也不会产生额外的开关损耗。首先详述了MMC的拓扑结构、工作原理以及调制方式;分析了开关状态交换时可能会出现的4种情况,分别是存在上升沿时桥臂电流大于0或小于0和存在下降沿时桥臂电流大于0或小于0;给出了具体的电容电压平衡方法及流程图。实验结果表明,所提方法可快速有效地将桥臂的电容电压集中在参考值附近,且各路电压之间无大幅波动,具有很好的平衡效果。
1
现有的三极直流输电系统因极3采用晶闸管换流器而存在交流电压易波动、过渡阶段易引发过电压和过电流等固有缺陷。为此提出了一种改进式的混合型系统,即极3换流站改用基于全桥子模块的模块化多电平换流器。为使系统获得较好的响应特性,提出了无功(电压)平衡、电流平衡和子模块电容电压平衡3个控制要求,并根据控制要求给出了模块化多电平换流器采用改进直流电流控制和交流电压控制、子模块采用电容电压平衡控制等控制措施。利用时域仿真软件PSCAD/EMTDC对所提出的系统进行了仿真研究,仿真结果验证了所提出的混合型三极直流系统及其控制策略能够很好地实现系统电压平衡、电流平衡和子模块电容电压平衡。
1
综合电网换相换流器(LCC)和模块化多电平换流器(MMC)的优点,并针对我国西电东送的实际场景,对如下3种目前比较有应用价值的混合直流输电系统方案进行研究:方案1的送端采用LCC,受端采用半桥子模块型MMC串联二极管阀;方案2的送端采用LCC,受端采用全桥子模块与半桥子模块构成的子模块混合型MMC;方案3的送端采用LCC,受端采用LCC和半桥子模块型MMC构成的串联混合型换流器。首先,分别介绍了3种混合直流输电系统的拓扑结构、数学模型及控制方式;然后,在PSCAD/EMTDC中搭建了3种混合直流输电系统,对3种混合直流系统在送端交流系统故障和受端交流系统故障情景下的响应特性进行对比分析;最后,基于仿真结果总结了每种拓扑结构的优劣势。仿真结果表明,在送端交流系统故障的情景下,方案1可能会出现功率中断;在受端交流系统故障的情景下,方案1的故障响应特性要优于其他2种方案。
1
行业资料-交通装置-一种全桥结构模块化多电平换流器桥臂等效电路.zip