朴素贝叶斯分类器可以应用于岩性识别.该算法常使用高斯分布来拟合连续属性的概率分布,但是对于复杂的测井数据,高斯分布的拟合效果欠佳.针对该问题,提出基于EM算法的混合高斯概率密度估计.实验选取苏东41-33区块下古气井的测井数据作为训练样本,并选取44-45号井数据作为测试样本.实验采用基于EM算法的混合高斯模型来对测井数据变量进行概率密度估计,并将其应用到朴素贝叶斯分类器中进行岩性识别,最后用高斯分布函数的拟合效果作为对比.结果表明混合高斯模型具有更好的拟合效果,对于朴素贝叶斯分类器进行岩性识别的性能有不错的提升.
1
多元正态分布参数最大似然估计
2021-12-21 16:02:17 340KB 概率密度估计
1
概率密度估计 概率密度估计问题: 给定i.i.d.样本集: 估计概率分布:
2021-07-19 14:15:28 1.29MB 非参数估计
1
分别采用高斯窗和方窗对给定的男女生身高体重分布进行概率密度估计,并设计基于贝叶斯最小错误率的分类器,对测试样本进行男女分类
2019-12-21 22:12:42 4KB matlab,parzen窗
1