根据提供的文件信息,本文将详细解释“opencv椭圆拟合”的相关知识点,包括椭圆拟合的基本概念、在OpenCV中的实现方式以及代码的具体解析。 ### 椭圆拟合基本概念 椭圆拟合是一种从图像中提取轮廓并用椭圆形状来逼近这些轮廓的技术。这种技术广泛应用于计算机视觉领域,比如物体识别、目标跟踪等场景。通过椭圆拟合,可以有效地减少噪声的影响,同时简化物体边缘的信息,从而提高后续处理步骤的效率和准确性。 ### OpenCV中的椭圆拟合实现 OpenCV提供了一套强大的工具集用于图像处理和分析,其中包括了椭圆拟合的功能。在OpenCV中,椭圆拟合主要是通过`cvFitEllipse`函数来完成的,该函数可以从一系列点集中拟合出一个最佳匹配的椭圆。 ### 代码解析 #### 1. 初始化与图像加载 ```c++ const char* filename = "rice.png"; if ((image03 = cvLoadImage(filename, 0)) == 0) { return -1; } ``` 首先定义了一个字符串变量`filename`,用来存放要读取的图片路径。这里假设要处理的图片名为`rice.png`。接着尝试使用`cvLoadImage`函数读取图片,并检查是否成功加载。如果未成功加载,则返回-1。 #### 2. 图像窗口初始化 ```c++ image02 = cvCloneImage(image03); image04 = cvCloneImage(image03); cvNamedWindow("Source", 1); cvNamedWindow("Result", 1); cvShowImage("Source", image03); ``` 这段代码创建了两个新的图像缓冲区`image02`和`image04`,它们与原始图像`image03`具有相同的尺寸和类型。然后创建了两个名为“Source”和“Result”的窗口,并在“Source”窗口中显示了原始图像。 #### 3. 创建阈值滑动条 ```c++ cvCreateTrackbar("Threshold", "Result", &slider_pos, 255, process_image); ``` 这里创建了一个阈值调整滑动条,用户可以通过调整滑动条的位置来改变阈值的大小,进而影响图像处理的效果。滑动条的初始位置设为70,最大值为255。 #### 4. 处理图像函数 ```c++ void process_image(int h) { CvMemStorage* stor; CvSeq* cont; CvBox2D32f* box; CvPoint* PointArray; CvPoint2D32f* PointArray2D32f; stor = cvCreateMemStorage(0); cont = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), stor); cvThreshold(image03, image02, slider_pos, 255, CV_THRESH_BINARY); cvFindContours(image02, stor, &cont, sizeof(CvContour), CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cvPoint(0, 0)); // ... 其他处理逻辑 ... } ``` `process_image`函数是整个程序的核心部分,它负责图像的处理和椭圆拟合的工作。首先创建了一个内存存储对象`stor`,用于保存轮廓信息。然后对二值化的图像执行轮廓检测,并遍历每一个检测到的轮廓,对其进行椭圆拟合处理。 #### 5. 椭圆拟合 ```c++ // 在循环内部 if (count < 6) { continue; } // 以下为椭圆拟合关键步骤 cvCvtSeqToArray(cont, PointArray, CV_WHOLE_SEQ); for (i = 0; i < count; i++) { PointArray2D32f[i].x = (float)PointArray[i].x; PointArray2D32f[i].y = (float)PointArray[i].y; } cvFitEllipse(PointArray2D32f, count, box); // 绘制椭圆 cvEllipse(image04, center, size, box->angle, 0, 360, CV_RGB(0, 0, 255), 1, CV_AA, 0); ``` 对于每个轮廓,首先将其转换为二维浮点数数组,然后调用`cvFitEllipse`函数进行椭圆拟合,得到拟合后的椭圆参数。在`image04`上绘制拟合后的椭圆。 该代码实现了基于OpenCV的图像椭圆拟合功能,通过对图像进行二值化处理、轮廓检测以及椭圆拟合,最终在图像上绘制出拟合后的椭圆,可用于进一步的目标识别或跟踪等任务。
2024-11-01 13:49:55 3KB 椭圆拟合
1
用opencv231+vs2008编写的一个拟合椭圆的程序,输入 是二值图,背景是黑色的,还有一个输入是轮廓的面积,能够剔除不需要要轮廓。代码中能测试选定的待拟合的轮廓(已注释),并把轮廓参数输出并测试。
2024-11-01 13:42:46 2KB opencv 椭圆拟合 轮廓提取
1
Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
bln128 椭圆曲线 256位模乘算子 verilogHDL 源代码。全流水线架构,流水级数为40个CLK。DSP48资源使用量180个左右。
2024-08-26 15:50:13 21KB
1
在给定的压缩包"基于弧邻接矩阵的快速椭圆检测_C++_Python_下载.zip"中,我们可以推测这是一个关于计算机视觉领域的项目,重点在于实现快速的椭圆检测算法。这个项目可能提供了C++和Python两种编程语言的实现代码,并且包含了一个名为"AAMED-master"的子目录或文件,这通常表示它是一个开源项目或者代码库。 **椭圆检测**是图像处理和计算机视觉中的一个重要任务,用于识别图像中椭圆形的形状。在各种应用场景中,例如工业检测、医学影像分析、自动驾驶等,椭圆检测都有其独特的价值。传统的椭圆检测方法包括霍夫变换、最小二乘法等,但这些方法在处理复杂背景或大量椭圆时效率较低。 **弧邻接矩阵**是一种用于表示图像中像素间连接关系的数据结构,尤其适用于边缘检测和形状识别。它记录了图像中每个像素与其相邻像素之间的连接情况,通过分析这些连接关系,可以有效地找到潜在的边缘或曲线。在椭圆检测中,弧邻接矩阵可以用来追踪连续的边缘点,进一步推断出可能的椭圆轮廓。 **AAMED**(假设是"Angle-Adjusted Arc-based Edge Detector"的缩写)可能是这个快速椭圆检测算法的名字,它可能采用了优化的弧邻接矩阵来提高检测速度和精度。AAMED算法可能包括以下步骤: 1. **预处理**:对输入图像进行灰度化、噪声去除和边缘检测,为后续的弧邻接矩阵构建提供基础。 2. **弧邻接矩阵构建**:根据预处理后的边缘,建立弧邻接矩阵,记录像素间的连接信息。 3. **弧段提取**:通过分析弧邻接矩阵,找出连续的边缘点,形成弧段。 4. **形状分析**:对提取的弧段进行角度调整和形状匹配,判断其是否符合椭圆特征。 5. **椭圆参数估计**:对于满足椭圆条件的弧段,计算其对应的椭圆参数,如中心位置、半长轴和半短轴。 6. **后处理**:可能包括椭圆的细化、去噪以及重叠椭圆的合并等步骤,以提高检测结果的质量。 在C++和Python实现中,开发者可能使用了OpenCV等图像处理库,它们提供了丰富的函数来支持图像操作和形状检测。C++版本可能更注重性能,而Python版本可能更便于快速开发和调试。 为了深入理解和应用这个椭圆检测算法,你需要解压文件,阅读项目的文档,理解算法原理,并可能需要具备一定的C++和Python编程基础。此外,熟悉OpenCV库和其他图像处理工具也会对理解这个项目有所帮助。通过学习和实践这个项目,你可以掌握椭圆检测的核心技术,并可能将其扩展到其他形状的检测或者应用到实际问题中。
2024-07-10 11:29:51 959KB
易语言椭圆曲线算法加密文件源码,椭圆曲线算法加密文件,程序启动的初始化工作,调试相关的临时子程序1,SHA256,私钥到WIF格式,公钥到压缩格式,公钥解压缩,WIF格式到私钥,某一位公钥_初始化数据,Base58编码,Base58解码,显示各种运算的耗时,把明文文本的改变反映
2024-07-08 21:32:03 61KB 椭圆曲线算法加密文件 程序启动
1
基尔霍夫椭圆涡旋是嵌入在无粘性、不可压缩和无旋流体中的均匀涡度的二维椭圆区域(或“补丁”)。 G. Kirchhoff 在 1876 年证明了这些是非线性欧拉方程的精确解。 随后,AEH Love 分析了基尔霍夫涡旋的线性稳定性,并确定在大纵横比下它们是不稳定的。 他还获得了振荡频率和增长率的解析表达式。 自述文件中包含了他的论文的抄录,该论文于 1893 年发表在伦敦数学学会会刊上。 1979 年,NJ Zabusky、MH Hughes 和 KV Roberts 引入了一种现在通常称为“轮廓动力学”的数值方案。 这是一种用于模拟无粘性离散涡量块的流行工具。 它在数值上是有效的,因为跟随均匀涡度区域的演变只需要跟踪其边界。 我们在 Matlab 中实现了轮廓动力学算法,以重新检查基尔霍夫涡旋的演变,重点是系统的模式。 包括两个拟合例程,将解分解为组成的线性特征模式。 这些例程的一些
2024-04-12 11:24:03 816KB matlab
1
这是一种快速且非迭代的椭圆拟合。 用法: A = EllipseDirectFit(XY) 输入:XY(n,2)是n个点的坐标数组x(i)=XY(i,1), y(i)=XY(i,2) 输出:A = [abcdef]' 是系数向量最佳拟合椭圆的方程: ax^2 + bxy + cy^2 + dx + ey + f = 0, 要将此向量转换为几何参数(半轴、中心等),请使用标准公式,例如 Wolfram Mathworld 中的 (19) - (24): http://mathworld.wolfram.com/Ellipse.html 这种椭圆拟合是在文章中提出的AW Fitzgibbon, M. Pilu, RB Fisher “椭圆的直接最小二乘拟合” IEEE 翻译帕米,卷。 21,第 476-480 页(1999 年) 作者将其称为“直接椭圆拟合”。 我的代码基于数
2024-04-10 21:42:54 931B matlab
1
椭圆拟合的c++方法,参考github链接 https://github.com/seisgo/EllipseFit,原版是qt版本,改为不依赖qt的版本。 包含两个文件:myEllipse.h和myEllipse.cpp 具体参考:https://blog.csdn.net/iamqianrenzhan/article/details/95536334
2024-04-08 17:01:02 3KB 椭圆拟合
1
卫星轨迹,椭圆轨道,二维动态图。
2024-04-01 15:14:05 10.15MB 椭圆轨道
1