内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,主要实现了对研究区域(AOI)内2024年Landsat 8卫星影像的获取、预处理与分析。首先定义了一个地理范围矩形区域,随后加载了Landsat 8地表反射率数据集,并按空间范围、时间范围和云覆盖率进行筛选。接着通过自定义函数对影像应用缩放因子校正,生成中值合成影像并裁剪到研究区。在此基础上,计算归一化植被指数(NDVI)和归一化水体指数(NDWI),并对结果进行二值分类:NDVI ≥ 0.2 判定为植被,NDWI > 0.3 判定为水体。最后将原始影像、NDVI、NDWI及其分类掩膜可视化展示在地图上。; 适合人群:具备遥感基础知识和一定GEE平台操作经验的科研人员或学生,熟悉JavaScript语法者更佳;适用于地理信息、环境监测、生态评估等领域从业者。; 使用场景及目标:①实现遥感影像自动批量处理与指数计算;②开展植被覆盖与水体分布的快速提取与制图;③支持土地利用分析、生态环境变化监测等应用研究; 阅读建议:建议结合GEE平台实际运行该脚本,理解每一步的数据处理逻辑,可调整参数(如阈值、时间范围)以适应不同区域和研究需求,并扩展至多时相分析。
2026-01-06 11:32:32 3KB Google Earth Engine JavaScript
1
DB21_T 2230-2014是一个关于矿山及其他工程破损山体植被恢复治理验收的技术标准文件。该标准文件为矿山开采及其他工程项目造成的山体损害提供了植被恢复及治理的验收标准和要求。其内容不仅涉及了对破损山体的植被恢复的技术措施,还包含了相应的验收程序和评价指标,以确保植被恢复后的山体能够满足生态修复和环境保护的要求。 文件首先明确了植被恢复治理的定义和目标,即通过科学合理的方法和技术,恢复和改善破损山体的自然环境,防止水土流失和生态破坏,恢复其生态功能和景观效果。在治理过程中,应当依据当地的自然条件和环境特点,选用适宜的植物种类和植被配置方案,以达到最佳的生态和景观效果。 文件中还详细说明了验收的具体程序和步骤,包括准备阶段、实施阶段和完成阶段的验收工作。准备阶段的验收工作主要是对植被恢复的设计方案进行审查,确保其科学性和可操作性;实施阶段则侧重于对植被恢复施工过程的监督和管理,包括植物种苗的来源、质量,种植方式和技术,以及水土保持措施等;完成阶段的验收则关注最终的恢复效果,包括植被覆盖度、种类多样性、生态稳定性以及景观效果等各项指标。 此外,文件还提供了评价植被恢复治理效果的具体方法和指标,这些评价指标包括了定性和定量两个方面。定性评价主要是对治理区域的整体状况进行描述性评价,而定量评价则包括了植被覆盖度、生物多样性指数、土壤侵蚀量等可量化的数据。通过这些评价指标的综合判断,来确定植被恢复治理是否达到了验收的标准。 为了确保植被恢复治理的质量,文件还强调了定期监测和后续管理的重要性。在植被恢复治理工程完工后,需对恢复区域进行定期的跟踪监测,评估植被生长情况、生态系统稳定性以及可能存在的问题,并据此采取相应的管理和维护措施,以保证植被恢复的持续性和有效性。 文件提出了治理验收的合格标准,只有当植被恢复区域达到了文件中规定的各项技术和生态指标时,才能判定为验收合格。这意味着治理后的山体不仅要有良好的植被覆盖,还要在生态功能和景观效果上达到预期目标,为当地生态系统的健康和可持续发展提供保障。
2025-12-30 09:37:51 5.13MB
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 平台进行遥感数据分析的完整流程。首先,定义了研究的时间范围(2024年全年)和感兴趣区域(AOI),并设置了一个云掩膜函数来去除影像中的云和云阴影干扰。接着,从Landsat 8卫星影像集中筛选符合条件的影像,并对每个影像进行了预处理,包括计算归一化植被指数(NDVI)和地表温度(LST)。然后,通过线性回归方法确定了NDVI与LST之间的关系,进而计算了土壤湿度指数(TVDI)。最后,对样本点进行了统计分析,绘制了散点图,并计算了皮尔逊相关系数,同时将结果导出为CSV文件。 适合人群:具有遥感数据处理基础知识,特别是熟悉Google Earth Engine平台操作的研究人员或工程师。 使用场景及目标:①学习如何在GEE平台上处理Landsat 8影像;②掌握云掩膜技术的应用;③理解NDVI和LST的计算方法及其相互关系;④探索TVDI作为干旱监测指标的有效性;⑤了解如何进行数据可视化和统计分析。 阅读建议:由于涉及到多个步骤和技术细节,建议读者按照文中提供的代码顺序逐步执行,并尝试调整参数以观察不同设置下的效果变化。此外,对于不熟悉的地理信息系统概念或术语,可以通过查阅相关资料加深理解。
2025-12-06 20:35:53 3KB 遥感数据处理 JavaScript Earth
1
内容概要:该文档是一份基于Google Earth Engine(GEE)平台的完整遥感数据分析脚本,旨在通过多源遥感数据(Sentinel-2光学影像、Sentinel-1 SAR数据、Copernicus DEM地形数据、GEDI激光雷达生物量与树冠高度产品)估算越南嘉莱省(Gia Lai)的地上生物量(AGB)。脚本系统地实现了数据预处理、特征提取、随机森林回归模型构建与验证、生物量空间制图及总量估算,并进一步评估了各预测变量的重要性,最后将结果导出为资产和CSV报告。整个流程涵盖了从原始数据清洗、云掩膜、指数计算、投影统一、重采样到建模分析与结果可视化的全过程。; 适合人群:具备一定遥感与地理信息系统(GIS)基础,熟悉Google Earth Engine平台操作,从事生态环境、林业碳汇或定量遥感研究的科研人员或研究生。; 使用场景及目标:① 学习如何在GEE中融合多源遥感数据进行生物量反演;② 掌握机器学习(如随机森林)在遥感制图中的应用流程;③ 实现区域尺度地上生物量的空间分布制图与总量统计;④ 分析不同遥感特征对生物量估算的贡献度。; 阅读建议:此资源以实际可运行的JavaScript代码形式呈现,建议结合GEE代码编辑器逐步执行并理解每一步的数据流与参数设置,重点关注数据预处理的一致性、模型训练样本的生成方式以及结果导出路径的配置。
2025-11-12 21:19:43 39KB Google Earth Engine Remote
1
内容概要:本文介绍了使用COMSOL6.2软件对植被边坡植物根系吸水特性的数值模拟研究。重点探讨了四种不同根系分布形式(均布形、三角形、指数形、抛物线形)对无限边坡稳定性的影响。文中详细描述了模型建立的关键步骤,如根系分布形函数的设置、渗流控制方程的配置以及流固耦合的实现方法。此外,还展示了不同根系模型的后处理结果对比,验证了新模型相较于传统方法在精度上的提升。 适合人群:从事岩土工程、环境科学及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要评估植被根系对边坡稳定性影响的研究项目,旨在提高数值模拟的准确性,为边坡加固提供理论依据。 其他说明:文中提到的具体公式和操作细节有助于读者更好地理解和应用相关技术。同时,强调了新版COMSOL软件在模拟精度方面的改进。
2025-10-17 23:10:34 1.54MB
1
在中国科学研究及环境保护领域中,植被类型矢量数据是不可或缺的基础信息资源。其中,“中国植被类型矢量数据wgs84”是一个特别重要的数据集,它主要包含了中国境内各种植被类型的地理信息。这些信息以矢量格式提供,矢量数据相比于栅格数据,能够更好地保持数据精度,并有利于后续的分析和处理。 这份数据集通常会覆盖中国全境,将植被类型按照科学分类进行细分,如针叶林、阔叶林、草甸、灌丛、草原、湿地等。每一种植被类型都会通过不同的图层在矢量数据中得以表现,同时结合WGS84地理坐标系统,确保了数据的空间准确性和全球兼容性。 WGS84坐标系统全称为“World Geodetic System 1984”,是目前广泛使用的全球定位系统标准。采用这种坐标系统的数据能够方便地与其他GIS(地理信息系统)数据进行整合,从而支持多种空间分析功能,如植被分布的统计分析、植被覆盖度的计算、环境变化监测等。 矢量GIS(地理信息系统)是一种以矢量数据为基础的系统,它不仅可以存储和管理地理空间数据,还可以进行空间分析和地图制作。植被类型矢量数据wgs84在矢量GIS中的应用,对于理解生态环境、进行生态规划、开展自然资源管理、制定环保政策等方面具有极其重要的意义。 在实际应用中,研究者可能会根据植被类型数据进行如下工作: 1. 研究植被的空间分布规律,分析其与气候、地形、土壤等因素的关系。 2. 评估和监测自然保护区内的植被状况,为保护工作提供科学依据。 3. 预测未来植被的变化趋势,尤其是在全球气候变化的背景下。 4. 为城市规划和绿化建设提供基础数据支持,合理配置绿地系统。 5. 在灾害管理中,评估植被对洪水、滑坡等自然灾害的防控作用。 此外,植被类型矢量数据wgs84还对农业、林业、环境科学、生态旅游等领域的研究人员提供了极大的便利。它不仅有助于提高工作效率,更能够提升研究的深度和广度。 这份数据集的出现,得益于遥感技术的进步和地理信息科学的发展。遥感技术可以快速获取大范围地表信息,结合地理信息系统技术,能够对地表植被的分布和变化进行高效精确的监测和分析。 “中国植被类型矢量数据wgs84”是地理科学研究的重要工具,对于维护生态环境、推动可持续发展、提高人类福祉具有不可估量的价值。
2025-10-14 19:53:52 60.16MB GIS
1
内容概要:本文档介绍了利用Google Earth Engine平台计算Landsat 8和Landsat 9卫星影像的叶面积指数(LAI)的方法。首先定义了时间范围为2022年到2024年,并设置了云量覆盖小于10%的筛选条件。然后通过影像集合操作,对每个影像进行了波段选择、反射率转换、NDVI(归一化植被指数)、EVI(增强型植被指数)计算,最终基于EVI得到LAI。为了确保数据的时间连续性和完整性,以8天为间隔创建了时间序列,并对每个时间段内的最大值进行合成,同时去除了无有效数据的影像。最后,绘制了LAI和NDVI的时间序列图表,以便于分析特定区域在指定月份内的植被变化情况。 适合人群:从事地理信息系统、遥感科学或生态学研究的专业人士,以及对植被动态监测感兴趣的科研工作者。 使用场景及目标:①用于研究植被生长周期与环境因素之间的关系;②评估不同季节或年度间的植被覆盖变化;③为农业、林业管理和环境保护提供科学依据。 其他说明:此文档提供了详细的代码示例,用户可以根据自身需求调整参数设置,如时间范围、空间范围和云量阈值等,以适应不同的研究目的。此外,建议用户熟悉Google Earth Engine平台的基本操作和Python/JavaScript编程语言,以便更好地理解和应用这些代码。
2025-10-13 21:45:27 2KB 遥感影像处理 LANDSAT NDVI Leaf
1
城市热岛效应是指城市中地表温度明显高于周边郊区的现象,这一现象在热岛强度的空间分布图上表现为城市中心区域像高温岛屿一样凸现出来。城市热岛效应的强度变化规律和过程是城市热环境遥感研究的重要课题。热岛效应的传统研究多基于热红外波段遥感影像,通过反演地表温度来进行分析。而归一化植被指数(NDVI)作为植被覆盖度的度量指标,其与地表温度的变化呈现相反趋势。利用这一点,可以将NDVI作为衡量城市热岛效应的新指标。 中巴资源卫星(CBERS)是中巴两国合作的资源卫星项目,其影像数据具有较高的空间分辨率。CBERS卫星包含的CCD传感器能够提供多光谱数据,但其红外波段的数据量较少且分辨率较低,因此不适于地表温度的反演研究。然而,利用地表温度与NDVI的关系,可以基于决策树模型对城市热岛效应进行定量分析。文中提到的决策树模型能够将水体与非水体分离,因为水体在NDVI影像中呈现低值,而其地表温度通常也较低,因此水体的热岛效应较小。 归一化植被指数(NDVI)的计算公式是基于遥感图像中的近红外波段(NIR)和红波段(R)的反射值计算得出的。具体公式为NDVI = (NIR - R) / (NIR + R)。NDVI的值一般介于-1到+1之间。由于城市建筑和道路等不透水面的地表温度较高,对应NDVI值较低;而农业用地、绿地等植被覆盖度高的地区,其地表温度较低,NDVI值较高。因此,NDVI在空间变化上与地表温度呈现相反趋势,可以用来评价城市热岛效应。 在定量分析城市热岛效应时,可以对NDVI影像进行阈值划分,将城市热岛效应分为四级,以直观描述城市热场的变化。该模型的生态评价指标可以通过NDVI影像图的平均值(M)和标准差(D)来进行分类。通过对NDVI影像进行阈值划分,可以将城市热岛效应现象分为无、弱、中、强四个等级。不同等级采用不同的颜色来表示,例如:优良(绿色)、较差(品红色)、差(黄色)、红色。 利用决策树模型可以将水体信息提取出来,进而对非水体部分进行热岛效应分析。提取水体信息的方法包括单波段法和多波段法。单波段法主要利用近红外波段对水体的强吸收特性,划分水体和非水体。而多波段法则利用多个光谱波段的信息,例如归一化差异水体指数(NDWI),其计算公式为NDWI = (Green - NIR) / (Green + NIR),其中Green代表绿波段反射值,NIR代表近红外波段的反射值。NDWI是一种有效的水体提取指数,可以用来进一步分离水体与非水体,以便于进行更为精准的城市热岛效应分析。 通过对徐州地区的案例分析,本研究建立了评价指标体系,并提供了一种新的城市热岛效应定量分析模型。这一模型可以为城市环境监测、管理和规划提供科学依据,对缓解城市热岛效应、优化城市布局与规划具有重要的指导意义。
2025-09-05 13:33:17 315KB 首发论文
1
内容概要:本文旨在分析慕尼黑特蕾西恩维斯地区在2023年和2024年不同时间段(包括 Oktoberfest 期间)的地表温度(LST),以研究城市热岛效应。文中通过 Landsat 9 和 Sentinel-2 卫星影像数据,利用 Split-Window 算法计算 LST,并进行归一化处理和差异分析。此外,还计算了 NDVI、NDBI、NDWI 和 Albedo 等指数,并进行了土地覆盖分类。为了提高分辨率,采用了随机森林算法对 LST 数据进行降尺度处理。最后,通过统计分析和散点图验证了降尺度结果的有效性。 适合人群:具备一定遥感和地理信息系统(GIS)基础知识的研究人员和技术人员,尤其是对城市热岛效应和地表温度分析感兴趣的学者。 使用场景及目标:①分析特定区域(如 Oktoberfest 场地)在不同时间段的地表温度变化;②评估城市热岛效应的影响;③通过降尺度技术提高 LST 数据的空间分辨率;④验证降尺度方法的准确性。 阅读建议:此资源涉及多种遥感数据处理技术和算法,建议读者在阅读时结合实际案例进行实践操作,并重点关注代码实现和结果验证部分。同时,建议读者熟悉 Python 或 JavaScript 编程语言,以及 Google Earth Engine 平台的基本操作。
2025-06-22 14:25:25 35KB 地理信息系统 机器学习
1
内容概要:本文档由Amirhossein Ahrari提供,作为Google Earth Engine教程的一部分,主要介绍植被光学深度(VOD)产品的处理方法,使用Python API(Xee)。文档首先介绍了环境配置与初始化,包括安装所需库如xee、geemap、xarray等,并进行Earth Engine认证与初始化。然后,通过定义地理区域(以水文流域为例),获取并处理了2015年至2020年间L波段VOD数据集。对数据进行了年度和月度平均值计算,并通过matplotlib库绘制了不同时间尺度下的VOD分布图,最后将年度数据保存为netCDF格式。; 适合人群:对遥感数据处理、植被监测感兴趣的科研人员或学生,特别是熟悉Python编程且对Google Earth Engine有一定了解的用户。; 使用场景及目标:①学习如何利用Google Earth Engine平台获取和处理植被光学深度数据;②掌握使用Python API进行空间数据分析的方法;③了解植被光学深度数据的时间序列变化特征及其可视化表示。; 阅读建议:由于涉及到较多的技术细节,建议读者提前准备好相关软件环境,并按照文档步骤逐步操作,同时可以参考作者提供的视频教程加深理解。
2025-06-21 14:01:41 2KB Python Earth Engine 遥感数据处理
1