黄瓜病害图像数据集,高清的黄瓜病害,文件大小为537兆。Cucumber Disease Recognition Dataset
2024-04-17 09:33:05 537.62MB 数据集 植物病害
1
苹果叶片植物病理数据集(在天然环境下拍摄),原始数据集(植物病理学2020)苹果叶片疾病数据集(新植物疾病数据集)健康锈痂病。共6193张图片 苹果叶片植物病理数据集(在天然环境下拍摄),原始数据集(植物病理学2020)苹果叶片疾病数据集(新植物疾病数据集)健康锈痂病。共6193张图片
2022-12-18 18:28:49 812.9MB 苹果 叶片 植物 病害
植物病害分类 使用图像数据和神经网络对植物病害进行分类 该存储库包含用于训练几个深度卷积神经网络(CNN)的代码和相关分析,以识别14种作物物种和26种疾病。 使用在受控条件下收集并由PlantVillage项目提供的54306张患病和健康植物叶片图像的公共数据集对模型进行了训练。 评估了三种不同的方法来提高Mohanty等人报告的基线准确性。 在研究论文“将深度学习用于基于图像的植物病害检测”中,其中CNN模型也用于使用相同的数据集对植物病害进行分类。 研究的三种方法是“转移学习”,“单图像超分辨率”和“层次结构超类学习”,所有这些方法都集中于此数据集或图像分类问题所特有的特定组件。 项目组织 ├── LICENSE ├── Makefile <- Makefile with commands like `make data` or `make train` ├─
2022-09-12 14:51:12 10.45MB plant-disease cnn-keras JupyterNotebook
1
植物叶片病害数据集 含4500多张
2022-07-20 21:04:03 411.8MB 植物病害
1
PDD_demo ResNet可以
2022-03-08 21:21:13 10KB JupyterNotebook
1
基于深度学习的植物病害识别 这个基于django的Web应用程序使用经过训练的卷积神经网络来识别植物叶片上存在的疾病。 它由38种不同的健康和病态植物叶子组成。 38个类是: 苹果->苹果结ab 苹果->黑腐 苹果->雪松苹果锈 苹果->健康 蓝莓->健康 樱桃->白粉病 樱桃->健康 玉米-> Cercospora叶斑(灰色叶斑) 玉米->普通锈 玉米->北方叶枯病 玉米->健康 葡萄->黑腐 葡萄->埃斯卡(黑麻疹) 葡萄->叶枯病(Isariopsis Leaf Spot) 葡萄->健康 橙色->上龙冰(柑橘绿化) 桃->细菌斑 桃子->健康 胡椒,铃铛->细菌斑 胡椒,铃铛->健康 马铃薯->早疫病 马铃薯->晚疫病 土豆->健康 覆盆子->健康 大豆->健康 壁球->白粉病 草莓->叶焦 草莓->健康 番茄->细菌斑 番茄->早疫病 番茄->晚疫病 番茄->叶霉 番茄
2022-03-03 11:16:04 5.9MB JavaScript
1
开发环境:Python3.6.5、keras2.2.4、tensorflow1.12、django等 系统应用:本部分在训练完植物叶片病害识别的模型参数后,将植物叶片病害识别的模型部署到Web中,前端负责获取用户在页面上传的图像并预处理,再向服务器发出AJAX请求,请求内容为待识别的图像。服务器端程序生成TF会话并加载训练好的模型,调用相应的视图函数将请求数据送入TF会话中计算,最后将识别结果异步回传到前端。
数据集:本实验使用 Plant Village 公开数据集。本实验中的数据集共用 38个类别名称,代表38类病害。 代码:包含resnet50\ATT-ResNet\VGG等多个模型 实现环境:Python3.6.5、keras2.2.4、tensorflow1.12
植物病害形状特征提取:首先使用基于颜色的 k-means 进行裁剪 2 分割,然后将图像转换为 BW,然后计算形状特征区域、周长、对象数量、对象质心
2022-01-19 16:01:20 3KB matlab
1
植物病害检测仪 由和创建 我在中的 在经过预处理的数据集上训练模型,可以在下载。 本地设置 当地的: 建议在虚拟环境中设置项目,以保持依赖关系分离。 激活您的虚拟环境。 通过运行pip install -r requirements.txt安装依赖项。 通过运行python app/server.py serve启动服务器。 访问进行探索和测试。 码头工人: 确保Docker已安装在您的本地计算机中。 了解如何安装Docker 。 苹果电脑: $ git clone https://github.com/imskr/Plant_Disease_Detection.git $ cd Plant_Disease_Detection $ docker build -t fastai-v3 . $ docker run --rm -it -p 8080:8080 fastai-v3
2021-11-26 11:47:25 88.29MB cnn pytorch machinelearning deeplearning
1