GEE——连续变化检测和分类(CCDC).html
2024-09-19 16:32:04 1.21MB
1
标题中的“多种隧道裂缝数据集可用于目标检测分类”揭示了这个资源的核心内容,这是一个专门针对隧道裂缝检测的数据集,设计用于训练和评估目标检测模型。目标检测是计算机视觉领域的一个重要任务,它不仅要求识别图像中的物体,还要精确地定位这些物体的位置。在这个场景中,目标就是隧道裂缝,这对于隧道安全监测、维护工作以及结构健康评估具有重要意义。 描述进一步提供了具体信息,指出该数据集包含了2100多张经过人工打标签的图片,这意味着每张图片都已标记出裂缝的位置,这对于深度学习模型的训练至关重要。标签有两种格式:txt和xml。txt文件通常包含简洁的坐标信息,而xml文件则可能包含更详细的对象边界框信息,如顶点坐标和类别信息。这两种格式为不同的模型训练库提供了灵活性,比如PASCAL VOC和YOLO系列模型支持xml格式,而某些其他库可能更适合txt格式。 提到的YOLOv8是You Only Look Once (YOLO)目标检测框架的最新版本,这是一个实时目标检测系统,以其快速和高效著称。作者表示使用YOLOv8训练得到的模型在数据集上的平均精度(mAP)达到了0.85,这是一个相当高的指标,表明模型在识别和定位隧道裂缝方面表现出色。 结合“检测分类”和“深度学习数据集”的标签,我们可以理解这个数据集不仅用于定位裂缝,还可能涉及分类任务,即区分不同类型的裂缝,这在工程实践中可能是必要的,因为不同类型的裂缝可能预示着不同的结构问题。 这个压缩包提供的数据集是一个专为隧道裂缝检测定制的深度学习资源。它包括大量带有精确标注的图像,适配多种标签格式,并且已经过YOLOv8模型的验证,具有较高的检测性能。这样的数据集对于研究者和工程师来说非常有价值,他们可以利用这些数据来开发或改进自己的目标检测算法,以提升隧道安全监控的自动化水平和效率。同时,由于数据集的质量和规模,它也适用于教学和学习深度学习,尤其是目标检测和图像分类领域的实践项目。
1
本项目采用YOLOv5实现垃圾分类目标检测。利用大量已标注目标检测数据集进行训练,对居民生活垃圾图片进行检测,找出图片中属于哪个类别的垃圾,并指示出在图片中的位置。 本工程YOLOv5使用PyTorch版的ultralytics/yolov5,在Windows系统上进行垃圾分类目标检测的项目演示。具体项目过程包括:数据集及格式转换、探索性数据分析(EDA)、安装软件环境、安装YOLOv5、修改YOLOv5代码(为支持中文标签)、训练集和测试集自动划分、修改配置文件、准备Weights&Biases训练可视化工具、训练网络模型、测试训练出的网络模型和性能统计。
2024-04-15 16:07:26 391.13MB pytorch pytorch 目标检测 垃圾分类
1
番茄作物是市场上的重要主食,并且是日常食用的最常见的作物之一。 植物或农作物疾病导致生产质量和数量下降; 因此,对这些疾病的检测和分类非常必要。 感染番茄植物的疾病有很多类型,例如细菌斑,晚疫病,裁缝叶斑,番茄花叶和黄色弯曲。 早期发现植物病害可提高产量并提高其质量。 当前,智能方法已被广泛用于检测和分类这些疾病。 这种方法可以帮助农民识别类型吗? 感染农作物的疾病 当前工作的主要目的是应用一种现代技术来识别和分类疾病。 智能技术基于使用卷积神经网络(CNN)的技术,而卷积神经网络是机器学习的一部分,可以早期发现有关植物状况的信息。 CNN方法取决于从输入图像中提取特征(例如颜色,叶子边缘等),并在此基础上确定分类。 Matlab m文件已用于构建CNN结构。 从植物村获得的数据集已用于训练网络(CNN)。 所建议的神经网络已被用于分类六种类型的番茄叶片情况(一种健康的叶片植物疾病和五种类型的叶片疾病)。 结果表明,卷积神经网络(CNN)已经实现了96.43%的分类精度。 真实图像用于验证建议的CNN技术进行检测和分类的能力,并使用5兆像素相机从真实农场中获得,因为感染该星球的大多数常
2024-03-01 15:43:09 1.85MB 行业研究
1
颜色分类leetcode 实时交通标志检测和分类 使用 SSD 的新版本将于今年夏天发布,供任何需要更高精度检测方法的人使用。 请继续关注新的更新! 1. 说明 该项目是一个使用 OpenCV 的视频交通标志检测和分类系统。 检测阶段使用图像处理技术在每个视频帧上创建轮廓并在这些轮廓中找到所有椭圆或圆。 它们被标记为交通标志的候选对象。 检测策略: 增加视频帧的对比度和动态范围 使用 HSV 颜色范围去除不必要的颜色,如绿色 使用 Laplacian of Gaussian 显示对象的边界 通过二值化制作轮廓。 检测椭圆形和圆形轮廓 在下一阶段 - 分类阶段,通过基于候选坐标从原始帧中裁剪来创建图像列表。 预训练的 SVM 模型将对这些图像进行分类,以找出它们是哪种类型的交通标志。 当前支持的交通标志(每个标志文件的名称与其在 SVM 中的类相对应): 注意: 所有属于 8 级及以上的标志都被标记为OTHERS,因为比赛需要这样做。 还有一个 0 类被标记为非交通标志 仅对当前帧中最大的标志进行裁剪和分类 每次main.py调用时都会训练 SVM 模型,在检测阶段之前,但我仍然保存模型
2023-04-11 14:56:53 26.78MB 系统开源
1
基于时频图深度学习的雷达动目标检测与分类.pdf
2023-03-17 23:30:30 1.31MB
1
传统的卷积神经网络(CNN)是单任务网络,为实现带式输送机输煤量和跑偏的同时检测,使用2个卷积神经网络分别对输煤量和跑偏进行检测,导致网络体积大、参数多、计算量大、运行时间长,严重影响检测性能。为降低网络结构的复杂性,提出了一种基于多任务卷积神经网络(MT-CNN)的带式输送机输煤量和跑偏检测方法,可使输煤量检测和跑偏检测这2个任务共享同一个网络底层结构和参数。在VGGNet模型的基础上,增大卷积核和池化核的尺度,减少全连接层通道数量,改变输出层结构,构建了MT-CNN;对采集的输送带图像进行灰度化、中值滤波和提取感兴趣区域等预处理后,获取训练数据集和测试数据集,并对MT-CNN进行训练;使用训练好的MT-CNN对输送带图像进行识别分类,实现输煤量和跑偏的准确、快速检测。实验结果表明,训练后的MT-CNN在测试数据集中检测准确率为97.3%,平均处理每张图像的时间约为23.1 ms。通过现场实际运行验证了该方法的有效性。
1
蘑菇图像的检测和分类数据集,(553张JPG图片,一个带有image_id和类的CSV文件。15个类,每个类有30-50张图片。) 蘑菇图像的检测和分类数据集,(553张JPG图片,一个带有image_id和类的CSV文件。15个类,每个类有30-50张图片。) 蘑菇图像的检测和分类数据集,(553张JPG图片,一个带有image_id和类的CSV文件。15个类,每个类有30-50张图片。)
2022-12-18 18:29:00 359.29MB 深度学习 蘑菇 图像 分类
深度学习图像处理,垃圾分类目标检测数据集,自己处理的,质量较好,付费资源需要的联系
2022-10-27 12:06:01 158B 目标检测 垃圾分类
1
文献阅读(37)的原文,文章主要是机器学习和深度学习在糖网方面的应用。 文章核心:眼底图像经过传统方法增强后,使用一个简短的深度卷积神经网络对糖网进行分类。其中使用的传统的图像增强方法是HE和CLAHE
2022-10-21 12:05:28 1.84MB 文献阅读
1