一种基于梯度方向直方图的俯视行人的检测方法
2022-11-20 15:21:59 789KB pyhon3 python入门
1
基于加权颜色直方图与梯度方向直方图自适应融合的粒子滤波跟踪算法 matlab仿真 直升机目标跟踪 例子,使用多特征自适应融合的 粒子滤波方法,注意这是32位系统版本,64位需要重新对c语言进行编译。
1
人体检测梯度方向直方图 Histograms of Oriented Gradients for Human Detection
2022-01-23 09:15:27 523KB hog opencv 行人检测
1
提出了一种基于HOG-LBP特征融合的人体头肩检测方法,其要点是将人体头肩图像等分为多个部分重叠的块,从每个块内提取HOG和LBP特征并加以融合,以得到更有效的人体头肩的边缘轮廓和纹理特征,融合后的特征送入支持向量机SVM(Support Vector Machine)通过Bootstrapping的方式进行训练,得到最终的判别模型。实验结果表明,该方法的检测效果优于基于单一HOG、LBP特征的方法。
2021-10-30 16:30:20 395KB 梯度方向直方图
1
由于野外的早期烟雾具有稀疏、扩散缓慢、面积小等特点,现有算法存在提取烟雾候选区域不完整或者产生空洞等问题。为此,提出一种基于“背景反馈”的动态背景更新算法。首先提取运动目标,依据烟雾颜色特征,使用K-means算法去除非烟颜色干扰像素,以更早得到烟雾疑似区域;然后提取每一个疑似烟雾区域的面积增长特性、空间能量及LBP直方图和HOG,并分别计算特征的置信度;最后将得到的置信度输入动态得分组合,确定每个疑似烟区是否包含烟雾。实验结果表明,所提算法能够更早地检测出烟雾,有效降低误警率。对于中远距离场景,平均可提早94帧检测到烟雾。
1
Histograms of Oriented Gradients for Human Detection,HOG,梯度方向直方图
2021-07-19 22:46:32 445KB HOG 梯度方向直方图
1
基于提高红外图像行人检测准确率的目的,提出了一种基于多特征的红外行人检测算法。首先提取训练样本的梯度方向直方图特征和强度自相似性特征,利用二者相结合得到联合特征训练支持向量机(SVM),之后利用滑动窗口法対整幅红外图像进行遍历,用训练好的SVM进行分类检测。在LSI Far Infrared Pedestrian Dataset数据库上实验证明,基于多特征的检测方法相较于单一特征的方法提高了红外行人检测的精度,降低了误检率和漏检率。
1
本程序使用matlab实现了图像HOG特征的提取,效果不错
2019-12-21 22:16:42 106KB matlab HOG 梯度方向直方图
1