通过局部传播进行图像滤波的边缘感知梯度域优化框架
2023-04-18 15:34:01 1.29MB 研究论文
1
可以直接运行的梯度域引导图滤波Gradient Domain Guided Image Filtering MATLAB源码
2022-09-14 16:15:40 1.09MB MATLAB 计算机视觉
1
对称梯度域机器学习(sGDML) 有关更多详细信息,请访问: : 可以在这里找到文档: : 要求: Python 3.7以上 NumPy(> = 1.19) 科学(> = 1.1) 可选的: PyTorch(用于GPU加速) ASE(> = 3.16.2)(运行原子模拟) 入门 稳定释放 大多数系统pip预先安装了针对Python pip的默认软件包管理器。 只需调用以下sgdml即可安装sgdml : $ pip install sgdml sgdml命令行界面和相应的Python API现在可以在系统上的任何位置使用。 开发版 (1)克隆存储库 $ git clone https://github.com/stefanch/sGDML.git $ cd sGDML ...或更新您现有的本地副本 $ git pull origin master (2)安装 $ pi
1
为提高雾天图像增强的对比度并保持颜色恒常性,提出了基于全变分 Retinex 及梯度域的雾天图像增强算法。首先,采用高斯—赛德尔 GS(Gauss-Seidel)迭代算法对基于 Retinex 的全变分能量泛函数进行求解,从而有效地保持颜色恒常性;其次,采用相对梯度与绝对梯度相结合的方式拉伸雾天图像较亮处的梯度, 在全变分Retinex理论下重建增强后的雾天图像,并将该增强算法应用到彩色图像;最后,加权融合基于全变分Retinex增强算法与梯度域增强算法的增强结果,使得增强结果既能提高对比度又能保持色彩恒常性。实验结果表明,本算法提高了雾天图像增强后的对比度和清晰度,具有颜色恒常性、颜色保真高等特性。
1
传统基于样本块的图像修复算法中样本块大小是固定不变的,在修复过程中无法根据图像的具体情况进行调节,这在很大程度上影响了图像的整体修复效果。为了解决这一问题,提出一种自适应确定样本块大小的方法。该算法通过分析图像的梯度域变化,获得各像素点处的结构信息,进而自适应确定待修复样本块的大小。仿真实验结果表明,该算法能够有效克服传统方法中经常出现的诸如结构误传播、图像整体结构丢失等缺点,对具有明显结构变化的图像取得了比较理想的修复效果。
1
matlab开发-多曝光多焦点融合梯度域。一种多曝光多焦点图像的融合算法
2021-09-17 15:18:56 31KB 游戏
1