捅 要:滚动轴承故障信号是一种典型的周期性冲击信号,如何从含有强噪声的振动信号中有效地提取出冲击特征信号是轴承故障诊断的关键。基于数学形态学理论,提出了一种自适应多尺度形态梯度变换(AMMG)方法,能够在有效抑制噪声的同时很好的保留信号的细节。仿真信号和实测轴承故障信号的分析结果表明,与常用的包络解调分析和近来提出的另一种基于数学形态学的形态闭变换方法相比较,自适应多尺度形态梯度变换具有更强的噪声抑制和脉冲提取能力,并且计算简单、快速,为滚动轴承故障特征提取提供了一种有效的方法。
2021-11-06 16:07:40 367KB 工程技术 论文
1
针对现有立体匹配算法对噪声敏感、易失真、在视差不连续区域与弱纹理区域误匹配率高的问题, 提出一种改进Census变换与梯度融合的多尺度立体匹配算法。采用支持窗口内所有像素的加权平均灰度值作为Census变换的参考值, 将Census代价与由水平和垂直方向归一化结合的梯度代价进行加权融合, 通过设置噪声容限获得稳定的代价, 提高了单像素匹配代价的可靠性;在多分辨率尺度下, 采用改进引导滤波算法完成对匹配代价的聚合;通过视差提取获得视差图。实验结果表明, 该算法在Middlebury测试平台上对标准立体图像对的平均误匹配率为4.74%, 对27组扩展立体图像对的平均误匹配率为8.67%。该算法使得视差不连续区域与弱纹理区域的误匹配率进一步降低, 且对噪声和光照等干扰表现出较好的稳健性。
2021-09-09 09:38:12 11.95MB 机器视觉 立体匹配 Census变 梯度变换
1