是一种简单的程序 在黄广斌的基础上进行了修改,主要用于分类为题,可以显示最后的分类结果
2021-11-03 19:21:29 6KB 极端学习机
1
针对回归问题中存在的变量选择和网络结构设计问题, 提出一种基于互信息的极端学习机(ELM) 训练算法, 同时实现输入变量的选择和隐含层的结构优化. 该算法将互信息输入变量选择嵌入到ELM网络的学习过程之中, 以网络的学习性能作为衡量输入变量与输出变量相关与否的指标, 并以增量式的方法确定隐含层节点的规模.在Lorenz、Gas Furnace 和10 组标杆数据上的仿真结果表明了所提出算法的有效性. 该算法不仅可以简化网络结构, 还可以提高网络的泛化性能.
1
针对点预测类方法无法消除预测误差的不足,文中提出一种光伏发电功率短期预测方法。该方法采用极端学习机为光伏发电功率预测的回归预测方法,并结合三角形隶属函数模糊信息粒化的思路,将一定时间窗口的光伏发电功率历史数据进行模糊粒化。粒化后的窗口内历史数据包含功率变化值的最小值、最大值和平均值,形成了新的训练集,进一步对训练集采用极端学习机算法进行训练与预测,实现了光伏发电功率的区间预测。以某地区的光伏发电功率历史数据为算例进行了验证,结果表明:本文提出的方法可以预测光伏发电功率的波动范围,光伏发电功率真值全部包含在所预测的区间范围内。该方法对包含光伏新能源发电的电网调度计划具有工程实践意义。
1
极端学习机的回归及分类,包括ELM的回归拟合——基于近红外光谱的汽油辛烷值预测;ELM的分类——鸢尾花种类识别
2019-12-21 18:57:44 172KB 极端学习机
1