静态、动态贝叶斯网络—GeNIe软件建模 贝叶斯网络模型建立指导:包括条件概率表(CPT)的设定方法(二态或者多状态均可),软件的使用方法动态贝叶斯网络,分析方法等 如何构建贝叶斯的结构,以及如何获取贝叶斯网络的参数(包括先验概率和条件概率CPT) 贝叶斯网络的敏感度分析以及重要度分析方式,例如龙卷风图,BIM RRW等重要度评估方法 GeNIe软件助力贝叶斯网络建模与分析:结构构建、参数获取及敏感度评估 贝叶斯网络是一种基于概率推理的图形化模型,它能够对不确定性进行推理、学习和预测,广泛应用于风险评估、决策支持、数据挖掘等领域。GeNIe软件是支持贝叶斯网络建模与分析的工具之一,它具备直观的图形界面,方便用户构建和操作网络模型。在贝叶斯网络建模的过程中,模型的结构构建和参数设定是两个核心步骤。结构构建涉及到确定变量之间的依赖关系,以图形化的方式表示变量间的条件独立性,形成一个有向无环图。参数设定则关注于为网络中的条件概率表(CPT)赋予具体的数值,这些数值可以是先验概率也可以是通过数据学习得到的条件概率。 在静态和动态贝叶斯网络中,静态网络适用于那些不随时间变化的场景,而动态网络则涉及到随时间演化的系统。动态贝叶斯网络能够描述时间序列数据,通常会涉及到时间片的概念,每个时间片包含状态变量的更新,通过转移概率来描述时间之间的依赖关系。动态网络的建立需要考虑状态转移模型,以及可能的观测模型。 在使用GeNIe软件进行贝叶斯网络建模时,用户可以通过拖放节点和连接它们的方式来创建网络结构,并通过界面输入或导入数据来设定CPT。软件还提供了学习功能,可以基于实际观测数据自动调整网络参数,以更好地反映实际情况。 一旦构建了贝叶斯网络,分析方法就变得至关重要。分析通常包括概率推理、敏感度分析和重要度分析。概率推理是指在给定部分变量的观测值后,计算其他变量概率分布的过程。敏感度分析则用于评估模型输出对于输入参数变动的敏感程度,这对于验证模型的稳健性非常重要。重要度分析则关注于特定变量对模型输出的影响力,有助于识别模型中最重要的变量。 在GeNIe中,敏感度分析可以通过龙卷风图来展示,而重要度分析可能通过BIM RRW等方法进行。这些方法帮助用户了解哪些参数或变量对结果影响最大,从而可以优先关注和优化这些部分。 GeNIe软件在贝叶斯网络建模与分析中发挥了重要的作用,它不仅提供了结构构建的便利,还简化了参数获取和敏感度评估的过程。通过软件的应用,研究者和工程师可以更加高效地建立模型,快速得到结果,并进行深入的分析和决策支持。 贝叶斯网络作为一种强大的概率模型,在处理不确定性问题时展现出了其独特的优势。而GeNIe软件为这种模型的创建和分析提供了强大的支持,使得用户能够更加直观和高效地利用贝叶斯网络解决实际问题。
2025-10-16 09:05:19 1.47MB
1
准确了解条件概率的概念很重要。准确了解条件概率的概念很重要。
2023-07-14 22:44:53 32KB 条件概率
1
在分布式传感器网络中,各个子网往往具有不同的辨识框架,此时经典的证据理论无法处理。针对这一问题,提出一种动态辨识框下的证据融合理论和条件更新理论的故障检测方法。首先获取最新的观测证据,提出采用模糊隶属度函数作为信任转换的桥梁,完成动态辨识框架下的信任测度;然后利用新来证据的信任测度对已有的证据进行更新,以此进行各个观测区域的故障检测;最后通过构造两个传感器子网S1和S2的分布式检测与识别系统对所提方法进行验证,结果显示该方法在处理动态辨识框架和故障检测方面的有效性。
1
一个独立的、跨平台的、用于计算互信息、联合/条件概率、熵等的包。 这个包也被用于一般的机器学习和数据挖掘目的,如特征选择、贝叶斯网络构建、信号处理等。 Matlab Central 交换站点的“生物技术和制药”类别下还提供了另一个用于最小冗余特征选择的相关软件包。 一个简单的演示称为 demo_mi.m。 *** 请注意,下载或使用此软件包即表示接受此软件包的许可。 总之,本包可免费用于非盈利用途,但未经作者彭汉川明确许可,不得以任何形式(包括修改后的形式)重新分发。 有关更多信息,请参阅自述文件。 ***
2022-08-30 20:16:15 294KB matlab
1
2022-2021学年高中数学北师大版选修1-2学业分层测评2 条件概率与独立事件 .docx
2022-02-06 14:00:06 74KB 技术
1
先验概率、类条件概率密度函数和后验概率 1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系: 先验概率:根据大量统计确定某类事物出现的比例,如在我国大学中,一个学生是男生的先验概率为0.7,而为女生的概率是0.3,这两类概率是互相制约的,因为这两个概率之和应满足总和为1的约束。 类条件概率密度函数:同一类事物的各个属性都有一定的变化范围,在这些变化范围内的分布概率用一种函数形式表示,则称为类条件概率密度函数。这种分布密度只对同一类事物而言,与其它类事物没有关系。为了强调是同一类事物内部,因此这种分布密度函数往往表示成条件概率的形式。例如x表示某一个学生的特征向量,则,男生的概率密度表示成P(x|男生),女生的表示成P(x|女生),这两者之间没有任何关系,即一般的情况下P(x|w1)+P(x|w2)≠1,可为从[0,2]之间的任意值。 后验概率:一个具体事物属于某种类别的概率,例如一个学生用特征向量x表示,它是男性或女性的概率表示成P(男生|x)和P(女生|x),这就是后验概率。由于一个学生只可能为两个性别之一,因此有P(男生|x)+P(女生|x)=1的约束,这一点是与类分布密度函数不同的。后验概率与先验概率也不同,后验概率涉及一个具体事物,而先验概率是泛指一类事物,因此P(男生|x)和P(男生)是两个不同的概念。
2021-12-22 18:14:33 5.9MB 模式识别
1
条件概率密度分布图(程序代码) plot(function(x) dnorm(x, mean = 5, sd = sqrt(2)),0,13,lwd=5,col="blue",xlab="昨晚睡眠时间长度x(小时)",ylab="概率密度",ylim=c(0,0.6),main="类条件概率密度") plot(function(x) dnorm(x, mean = 6, sd = 1),3, 13,lwd=5,col="red",add=TRUE) legend("topright", c("今天下午睡觉P(x|w1)", "没有睡P(x|w2)"),lwd=5,lty=1,inset = .02,col =c("blue","red"))
2021-10-06 21:27:48 3.3MB 贝叶斯决策
1
高中数学讲义微专题88 含有条件概率的随机变量问题.pdf
2021-07-13 14:02:48 483KB 高中数学
已知先验分布概率和条件概率,使用贝叶斯公式,求后验分布的概率
2021-07-05 18:04:07 271B 先验分布 贝叶斯 后验分布
1
使用朴素贝叶斯算法实现MNIST数据集的训练预测,精度较高,主要是参考统考学习李航一书和github上相关作者思路进行实现。
2021-06-04 20:10:47 13.22MB 机器学习 朴素贝叶斯 条件概率
1