https://blog.csdn.net/lidashent/article/details/134058091?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22134058091%22%2C%22source%22%3A%22lidashent%22%7D和这个相匹配,使用方式是在推理py中测试效果
2025-10-04 18:02:44 293.53MB pytroch fastrcnn
1
YOLOv5s.pt是一个深度学习模型的权重文件,它属于YOLO(You Only Look Once)系列的第五代改进版本,特别的是这里的"s"代表"small",意味着这是一个轻量级模型,适合在资源有限的设备上运行。YOLO是一种实时目标检测系统,它的主要任务是识别图像中的不同物体并框定它们的位置。 YOLOv5系列由 Ultralytics 开发,该框架在YOLOv3的基础上进行了优化,提高了检测精度和速度。YOLOv5s的特点包括: 1. **网络结构优化**:YOLOv5s采用了更高效的卷积神经网络结构,如SPP-Block(Spatial Pyramid Pooling)和Path Aggregation Network (PANet),这有助于捕获不同尺度的目标信息,并提高定位准确性。 2. **数据增强**:YOLOv5利用多种数据增强技术,如随机翻转、缩放、裁剪等,这些技术可以增加模型对不同输入图像的泛化能力。 3. **Mosaic数据增强**:这是一种独特的数据增强方法,它将四个随机采样的图像拼接在一起,使得模型在训练时能够同时处理多个目标和背景,提高了模型的检测性能。 4. **批归一化层与学习率调度**:YOLOv5s使用了动态批归一化(FrozenBN),并且采用了一种适应性学习率策略,以确保训练过程的稳定性和收敛速度。 5. **模型微调**:YOLOv5s.pt这个权重文件表示模型已经预先训练过,可以作为基础模型进行特定领域的微调,例如,如果你想要检测特定类型的物体,只需要加载这个预训练模型,然后在你的特定数据集上进行finetuning。 6. **PyTorch框架**:YOLOv5s模型是用PyTorch构建的,这是一个广泛使用的深度学习框架,具有良好的灵活性和可扩展性,使得模型的开发、训练和部署更加便捷。 7. **部署与推理**:权重文件yolov5s.pt可以被转换为不同的格式,以便在嵌入式设备或服务器上进行推理,如使用ONNX或TensorRT进行优化。 将YOLOv5s.pt文件放在项目根目录下,通常是运行YOLOv5模型所必需的,因为模型会自动寻找并加载这个权重文件进行预测。为了使用这个模型,你需要一个支持YOLOv5的Python环境,以及Ultralytics的YOLOv5库。通过简单的命令行接口,你可以快速进行对象检测任务。 总结来说,YOLOv5s.pt是YOLOv5系列的一个轻量级模型,适用于实时目标检测,具有高效率和良好精度的特点。通过这个预训练权重文件,开发者可以在自己的项目中快速应用或进一步微调目标检测模型。
2025-09-24 09:09:32 12.93MB yolov5s.pt
1
资源描述:YOLOv13是由清华大学联合太原理工大学、北京理工大学等高校团队于2025年6月发布的最新实时目标检测模型,延续了YOLO系列"只需看一次"(You Only Look Once)的设计哲学。作为当前YOLO家族的最新成员,它在MS COCO数据集上以6.4G FLOPs的Nano版本实现41.6% mAP,较前代YOLOv12-N提升1.5%精度,同时参数减少0.1M。其核心突破在于首次将超图理论(Hypergraph) 引入实时检测领域,通过建模多目标间的高阶语义关联,显著提升了复杂场景下的检测鲁棒性。 适用人群:本资源主要面向计算机科学、电子信息工程或数学专业的学生,特别是那些正在从事课程设计、期末大作业或毕业设计的学生。这些项目可能涉及目标检测、图像分析或人工智能应用,而yolov13的源码和权重可以作为基础工具,帮助他们快速构建和理解目标检测系统。
2025-07-11 16:58:33 257.89MB
1
从github下载的yolov12模型权重文件。从git下载这些文件,速度太慢了,还经常断了又得重新下载。笔者将已下载好的文件整理打包,分享出来,方便大家快捷下载和使用。 https://github.com/sunsmarterjie/yolov12?tab=readme-ov-file 压缩包内文件列表包括: yolov12n.pt yolov12s.pt yolov12l.pt yolov12m.pt yolov12x.pt YOLOv12模型权重文件包含了针对不同模型规模的预训练权重,从n到x的不同后缀,代表了模型从小型到大型的版本。这些权重文件是在github上开源项目的产物,但由于网络连接不稳定,导致下载速度缓慢和频繁中断的问题,作者为了方便大家使用,对已下载的权重文件进行了整理并打包分享。这些权重文件通常用于目标检测任务,YOLO(You Only Look Once)系列模型是当前计算机视觉领域中较为流行的实时目标检测算法之一。不同版本的YOLOv12模型权重文件,如yolov12n.pt、yolov12s.pt、yolov12l.pt、yolov12m.pt和yolov12x.pt,对应于不同的计算资源和检测精度需求。例如,n版本的模型较小,运算速度较快,适合在资源受限的设备上运行,如嵌入式系统或移动设备;而x版本模型较大,具有更高的检测精度,适合在具有较强计算能力的服务器或台式机上使用。因此,用户可以根据自己的具体应用场景和硬件条件选择合适的模型权重文件进行部署和应用。由于这些文件是在开源社区中共享的,因此在使用前,用户应当遵守相关的开源许可协议,并确保合法合规地使用。下载这些文件后,可以通过深度学习框架如PyTorch加载并应用到YOLOv12模型中,进行图像目标检测的任务。
2025-07-01 11:11:44 209.92MB
1
YOLOv10模型权重文件是一个深度学习领域的关键文件,其中YOLO代表“你只看一次”,是一种流行的实时目标检测系统。YOLOv10作为该系列的最新版本,代表了目标检测领域的前沿技术。YOLO模型之所以受欢迎,是因为其速度和准确性平衡得当,能够在保证较高检测精度的同时,实现实时处理视频流中的图像。 YOLOv10模型权重文件包含了训练有素的网络参数,这些参数是通过在大量带标签的数据集上训练得到的。权重文件是模型训练完成后的输出,它们代表了模型从数据中学到的知识。这些权重通常以文件的形式保存,以便在实际应用中对新的图像数据进行预测和分析。 YOLOv10的权重文件通常非常大,因为它们包含了数以百万计的参数,这些参数构成了模型的神经网络结构。这些参数在训练过程中会根据损失函数进行不断调整,以最小化预测结果和真实标签之间的差异。权重文件的名称通常遵循一定的命名规则,以便于管理和使用。 权重文件在实际应用中的作用举足轻重。它们使模型能够识别图像中的不同物体,并准确地标出它们的位置和类别。在安防监控、自动驾驶汽车、工业视觉检测以及智能视频分析等领域,YOLOv10模型的权重文件发挥着至关重要的作用。 使用这些权重文件时,通常需要一个与之兼容的YOLOv10模型架构。这意味着模型的每一层都有明确的定义,比如卷积层、池化层和全连接层等。权重文件中的参数是按照这些层的结构进行存储的,以确保加载后能够正确地应用于每个层中。 由于YOLOv10的权重文件是预训练的,因此在应用这些模型进行目标检测时,通常不需要从头开始训练。开发者只需下载相应的权重文件,并将其集成到自己的应用中。这种方式大大简化了机器学习项目的部署过程,缩短了从概念到实际应用的时间。 然而,由于权重文件的大小和复杂性,开发者在实际操作中需要注意文件的存储和传输问题。确保网络连接的稳定性和足够的存储空间是使用这些文件前的必要准备。此外,开发者还需要注意模型权重与自己项目中所使用的框架版本兼容性问题,确保模型能够顺利运行。 YOLOv10模型权重文件是实现高效目标检测的关键,它的使用不仅限于学术研究,还包括了广泛的实际应用。通过这些训练有素的权重文件,开发者可以快速实现复杂场景下的实时目标检测,推动了智能监控、自动驾驶等技术的快速发展。
2025-06-03 09:44:44 369.11MB
1
yolov11n.pt、yolov11s.pt、yolov11m.pt、yolov11l.pt、yolov11x.pt全部模型权重文件打包
2025-05-17 10:57:41 203.53MB
1
YOLOv2(You Only Look Once version 2)是一种基于深度学习的实时目标检测系统,由Joseph Redmon和Ali Farhadi等人在2016年提出。它在YOLO(第一代)的基础上进行了改进,提高了检测精度并减少了计算量,从而在保持速度的同时提升了性能。这个压缩包包含的是YOLOv2在608*608分辨率下的预训练权重文件(yolov2.weights)和配置文件(yolov2.cfg),这两个文件对于理解和应用YOLOv2模型至关重要。 我们来详细解析YOLOv2的核心特点: 1. **多尺度预测**:YOLOv2引入了多尺度预测,通过在不同尺度上进行预测,提高了对小目标检测的准确性。它采用了一个名为"feature pyramid network"(特征金字塔网络)的结构,能够处理不同大小的目标。 2. **Batch Normalization**:在YOLOv2中,几乎所有的卷积层都采用了批量归一化,这有助于加速训练过程,提高模型的稳定性和收敛速度。 3. **Anchor Boxes**:YOLOv2使用预先定义的 anchor boxes(锚框)来覆盖多种目标的尺寸和宽高比,这些锚框与真实边界框进行匹配,从而提高了检测精度。 4. **Skip Connections**:YOLOv2借鉴了ResNet的残差学习框架,引入了跳跃连接,使得低层特征可以直接传递到高层,保留了更多的细节信息,提高了定位的准确性。 5. **Fine-tuning**:预训练权重文件(yolov2.weights)是在大量图像数据集如ImageNet上训练得到的,可以作为基础模型,通过微调适应特定任务的数据集。 配置文件(yolov2.cfg)是YOLOv2模型结构的描述,包含了网络的层定义、超参数设置等信息。例如,网络的深度、每个卷积层的过滤器数量、池化层的大小、激活函数的选择等都会在这个文件中指定。用户可以根据自己的需求调整这些参数,进行模型的定制。 使用这个预训练权重文件和配置文件,开发者或研究人员可以快速部署YOLOv2模型进行目标检测任务,或者进一步在自己的数据集上进行迁移学习,以优化模型性能。对于初学者来说,这是一个很好的起点,因为可以直接利用已有的模型进行实践,而无需从头开始训练。 总结来说,YOLOv2是一个高效且精确的目标检测框架,广泛应用于自动驾驶、视频监控、图像分析等领域。这个压缩包中的预训练权重和配置文件为理解和应用YOLOv2提供了便利,是深度学习和机器视觉领域的重要资源。通过学习和实践,我们可以深入理解目标检测技术,并掌握如何利用深度学习解决实际问题。
2025-05-16 13:21:10 180.48MB 神经网络 机器学习 机器视觉 深度学习
1
使用5000张公开的apple数据集进行训练,包括训练完成的权重文件(.pt)和训练数据。
2025-05-15 16:16:27 26.09MB 数据集
1
本设计以 STM32F407 芯片和编码电机为核心制作小车,通过 OPENMV摄像头识别病房号,将数据发送给 NVIDIA 控制装置。NVIDIA 与 STM32之间使用串口通信进行数据传输。小车 1 通过蓝牙通信模块发送给小车2 行走指令,通过矢量合成算法来处理并计算得出小车各个轮胎所需求的转速,再由 PID 算法控制 PWM 的占空比,从而调整转速,实现小车的转向与前进。灰度传感器用于寻迹,OLED 屏可显示药房号。全国大学生电子设计大赛对每一位参赛者来说既是机遇,又是挑战。电赛对我们来说是一次重要的机遇,平时的不断学习,赛前的不断训练,从知识、技术的未知,到知识、技术的浅识,再到对知识、技术的理解,每一步都见证了我们对于电子设计大赛孜孜不倦地向往。与此同时,电赛对我们来说又是挑战。面对全新的赛题,对于问题的解决,我们团队合理分工,发挥各自优势,加快赛题的解答进度,极大考验团队合作和个人能力。通过电赛,我们的机械结构搭建,电路设计调试,软件编写,算法设计,软件仿真测试等各项技术能力得到了显著的提高。
2025-05-11 00:51:20 289.73MB 深度学习 stm32 人工智能
1
codeformer.pth是 Stable Diffusion 的换脸插件ReActor所使用的权重文件,包含了模型在训练过程中的所有参数。当需要使用CodeFormer模型进行预测或者微调时,需要加载这个文件来初始化模型的参数。 解决了stable-diffusion-webui中自动下载超时或报错的问题: 下载后存放在sd-webui-aki\models\Codeformer目录下 在人工智能领域,尤其是计算机视觉与图像处理方向,换脸技术一直是一项引人注目的研究课题。换脸技术的应用范围非常广泛,从娱乐影视行业的特效制作,到社交媒体的安全验证,再到个人隐私保护,都有着重要的应用场景。随着深度学习技术的快速发展,尤其是生成对抗网络(GAN)的兴起,使得换脸技术在效果和效率上有了质的飞跃。 Stable Diffusion是一种先进的深度学习模型,它采用了深度学习中的扩散模型原理,通过在潜在空间中逐步学习数据分布,最终生成高质量的图像。Stable Diffusion模型的稳健性与灵活性使其在AI绘画领域内得到了广泛的认可和应用。其核心优势在于能够生成分辨率高、细节丰富、视觉效果逼真的图像。 ReActor是Stable Diffusion的一个扩展插件,专门用于换脸任务。换脸技术的核心在于能够将一个人的脸部特征映射到另一个人的面部图像上,而保持目标图像的整体一致性。这个过程涉及到图像处理、特征提取、特征迁移以及图像合成等多个技术环节。ReActor插件正是在此基础上,进一步优化了换脸过程,使得操作更加简便,换脸效果更加自然流畅。 codeformer.pth是ReActor插件的核心组成部分,它是一个权重文件,存储了模型训练过程中学习到的所有参数。这些参数对于模型的预测性能至关重要,因为它们决定了模型在实际应用中的表现。在使用CodeFormer模型进行预测或者微调时,必须加载这个权重文件来初始化模型的参数。这样,模型才能够根据预训练的参数,快速准确地进行换脸操作。 在实际应用中,用户可能会遇到一些技术问题,比如在网络环境中下载时出现的超时或报错。为了解决这类问题,开发者们通常会预先准备好预训练模型的权重文件,并通过稳定的服务器提供下载。这样的文件在下载后,需要按照一定的目录结构存放,以确保软件能够正确识别和加载。根据描述,codeformer-v0.1.0.pth文件应当放置在sd-webui-aki\models\Codeformer目录下,以保证ReActor插件的正常工作。 人工智能软件与插件的发展,为各行各业带来了深刻的变革。像ReActor这样的换脸插件,不仅体现了人工智能技术在图像处理领域的进步,也让我们预见到未来技术在多媒体内容创作、网络信息安全以及个性化娱乐等领域的应用潜力。
2025-04-22 15:01:30 334.25MB 人工智能
1