针对标准粒子滤波算法难以解决的粒子退化问题和样本贫化现象,提出了基于权值优选的改进二阶中心差分粒子滤波算法。该算法主要从以下两方面进行改进:首先采用二阶中心差分滤波方法通过协方差矩阵的平方根来产生重要性密度函数,从而解决粒子退化问题;然后通过重采样方法的利用权值优选的思想来增加粒子集的多样性,有效避免了样本贫化的现象。仿真结果表明:该算法状态估计结果更加接近目标真实的状态估计,平均均方根误差也更低,跟踪效果更佳,同时保持了较高的运算效率。
1