加州房价数据集,可以用于数据分析、机器学习和深度学习的学习使用
2024-10-22 09:24:55 29.54MB 深度学习 机器学习 数据集
1
数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。 Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。从历史上看,这个术语起源于大型机领域,在那里它有一个明确界定的意义,非常接近现代的计算机档案。这个主题是不包括在这里的。 最简单的情况下,只有一个变量,然后在数据集由一列列的数值组成,往往被描述为一个列表。尽管名称,这样一个单数据集不是一套通常的数学意义,因为某一个指定数值,可能会出现多次。通常的顺序并不重要,然后这样数值的集合可能被视为多重集,而不是(顺序)列表。 值可能是数字,例如真正的数字或整数,例如代表一个人的身高多少厘米,但也可能是象征性的数据(即不包括数字),例如代表一个人的种族问题。更一般的说,价值可以是任何类型描述为某种程度的测量。对于每一个变量,通常所有的值都是同类。但是也可能是“遗漏值”,其中需要指出的某种方式。 数据集可以分
2024-09-15 18:11:57 394KB 机器学习 数据集
1
Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
2024-07-28 17:19:42 4KB 机器学习 数据集
1
机器学习基于yolov5的海棠花花朵检测识别项目源码+数据集+课程报告 1、搭建环境 创建运行yolov5的虚拟环境:conda create -n yolov5 python=3.9 安装yolov5的运行环境:pip install -r requirements.txt 运行yolov5算法:python detect.py --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube
2024-06-25 15:44:13 21.59MB 机器学习 数据集 课程资源
1
主要用于数据集的制作,要点在于图片的resize和由彩色图到灰度图的转换,以及随机划分测试与训练集
2024-05-01 17:55:17 2KB dataset 机器学习 数据集制作
1
基于opencv与机器学习的摄像头实时识别数字,包括完整代码、数据集和训练好的模型。识别准确率高达95%!!代码注释详细,方便理解!代码可以直接运行使用,没有门槛。
2024-04-13 19:52:48 68.25MB opencv 机器学习 数据集 数字识别
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
机器学习实验1:朝阳医院2018年销售数据 数据集描述:该数据集包含了朝阳医院2018年的销售数据,包括日期、科室、医生、药品名称、销售量等信息。 数据集格式:Excel文件(.xlsx) 机器学习实验2:adult数据集 数据集描述:该数据集是UCI机器学习库中的"Adult"数据集,包含了48,842个样本,每个样本有15个特征和一个标签。该数据集用于解决二分类问题,即判断一个人是否年收入超过50K美元。 训练数据文件名:adult.txt 测试数据文件名:adult.test 机器学习实验3:自定义数据集 数据集描述:该数据集可以根据实际需求自行分配,可以包含任何类型的数据和标签。 数据集路径:./data 在实验3中,你可以根据具体任务的需求,选择合适的数据集进行训练和测试。例如,如果你的任务是图像分类,可以选择一个包含图像文件和对应标签的文件夹作为数据集;如果你的任务是文本分类,可以选择一个包含文本文件和对应标签的文件夹作为数据集。
2024-02-02 09:14:15 23.3MB 机器学习 数据集 pytorch anaconda
1
coco2017数据集 18GB 很实用啊啊
2023-10-25 08:58:49 116B 机器学习 数据集 车辆检测 深度学习
1
进行学习机器学习,需要很多数据集进行练习,本数据集就是给开始学习人工智能的朋友准备的初级数据集,不再需要自己到处寻找数据集。
2023-04-25 14:27:31 55KB 机器学习数据集dog
1