本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
2025-06-10 20:22:07 19.32MB 遥感数据处理 趋势分析
1
在当今科技发展的迅猛浪潮中,医学影像技术一直是科学研究和临床诊断中极为重要的一环。尤其是随着COVID-19疫情的爆发,高效的图像处理技术对于识别、分析和诊断病毒性肺炎病变具有至关重要的意义。本篇文献介绍了一种基于Matlab的显著性COVID-19感染者区域检测和图像分割方法,旨在自动识别CT扫描或X光片中由COVID-19病毒引起的肺炎病变。 研究流程首先从医疗数据库中获取受过标注的COVID-19患者的胸部CT扫描图像,接着进行数据预处理,以标准化和归一化图像,减少噪声并增强图像质量。接下来,进行肺部分割,通过肺窗技术或深度学习方法只保留肺部区域,排除非肺部分。异常检测阶段运用机器学习算法或深度学习模型对疑似或确诊感染的肺部特征进行识别,这些特征可能包括磨玻璃影、斑点状密度增高或实变区等。 显著性计算是通过像素级别的特征提取来完成的,计算每个像素点的异常程度,并形成显著性图。随后设定阈值,将正常组织和病灶区域区分开来。区域聚类通过形态学操作或邻域聚类算法将连续的病灶区域连接起来,形成感染区域。在后处理阶段,对分割结果进行检查,如有必要,可以人工复核或调整算法参数。最后将分割出的感染区域可视化,用于疾病诊断报告或科研分析。 文中还提供了一部分Matlab源码,展示了如何读取图像、选择颜色空间、设置参数,并通过高斯滤波进行图像平滑处理。这一部分源码向读者介绍了从读取图像开始,到图像平滑的预处理步骤,为想要深入学习图像处理的读者提供了宝贵的资源。 此外,博主个人信息也在文档中有所提及,博主自称是热爱科研的Matlab仿真开发者,有丰富的Matlab项目合作经验,并提供个人主页链接和QQ二维码以便于读者交流和合作。同时,博主还分享了自己的座右铭“行百里者,半于九十”,表示追求技术卓越和不断进取的决心。 本篇文献不仅深入探讨了基于Matlab的显著性COVID-19感染者区域检测和图像分割技术,还提供了源码示例和联系方式,是研究医学图像处理和COVID-19疫情诊断技术的科研人员和学生不可多得的参考资料。
2025-05-21 00:45:55 14KB
1
显著性目标检测相当于语义分割中的二分类任务(包含背景) 项目里包含了DUTS数据集,对预处理transform的重新实现,利用混淆矩阵计算网络的性能,对预训练权重的迁移学习等等 对dataset的init方法重新编写的话,可以完成别的u2net的二分类任务
2023-07-18 17:17:08 943.77MB 目标检测 数据集
1
From Human Attention to Computational Attention: A Multidisciplinary Approach
2023-04-15 01:27:30 15.22MB 显著性检测
1
针对图像中相似冗余背景造成的显著目标识别的干扰问题,提出了一种基于超像素的冗余信息抑制的显著目标检测方法。首先,引入超像素的概念,利用超像素优化的空间特征分割图像,获取图像的相似区域;其次,为消除像素间的相关性,计算超像素的香农熵来表示图像的像素信息,并据此建立图像的信息图,最后,为了更有效地去除图像中的相似信息,利用自相似性抑制方法克服冗余信息,建立高效的图像显著图。最后的仿真结果表明, 所提算法与传统方法相比,不仅可以准确识别显著目标,而且可以更有效地抑制背景中的冗余信息。
2023-04-14 20:02:37 368KB 显著性
1
采用小波变换的方法进行显著性图像检测,获取图像中的显著区域
2023-04-04 10:15:10 255KB matlab 显著性检测 小波变换
1
基于显著性分析的立体图像视觉舒适度预测
2023-03-08 07:19:48 1.84MB 研究论文
1
图像显着性检测算法matlab代码
2023-03-02 14:40:37 9.62MB 系统开源
1
显著性检测算法常通过计算像素之间的差异来确定显著性,但是对像素的选取通常是固定的,容易忽略图像中物体的边界信息,导致最终检测结果中目标的边界比较模糊。借鉴生物视觉注意机制,提出了一种新的基于超像素和马尔科夫链的显著性区域检测算法,将图像分割成若干个超像素,使用Wasserstein距离衡量超像素之间颜色、方向和位置的差异来建立马尔科夫链,将显著性检测问题转换为马尔科夫链上的随机游走问题,使用它的平稳分布作为图像的显著度。实验结果表明,相对于两种经典算法,所提出的算法在主要目标及其边界的提取精度等方面取得了较为满意的效果。
2022-12-29 21:36:50 564KB 论文研究
1
针对显著性检测中特征选择的主观片面性和预测过程中特征权重的难以协调性问题,提出了一种基于全卷积神经网络和多核学习的监督学习算法。首先通过MSRA10K图像数据库训练出的全卷积神经网络(FCNN),预测待处理图像的初步显著性区域;然后在多尺度上选择置信度高的前景、背景超像素块作为多核支持向量机(SVM)分类器的学习样本集,选择并提取八种典型特征代表对应样本训练SVM;接着通过多核SVM分类器预测各超像素显著值;最后融合初步显著图和多核学习显著图,改善FCNN网络输出图的不足,得到最终的显著性目标。该方法在SOD和DUT-OMRON数据库上有更高的AUC值和F-measure值,综合性能均优于对比方法,验证了该方法在显著性检测中准确性的提高,为目标识别、机器视觉等应用提供更可靠的预处理结果。
1