具有自适应时间特征分辨率的3D CNN CVPR 2021论文的源代码: 。 即将推出! 敬请关注! @inproceedings{sgs2021, Author = {Mohsen Fayyaz, Emad Bahrami, Ali Diba, Mehdi Noroozi, Ehsan Adeli, Luc Van Gool, Juergen Gall}, Title = {{3D CNNs with Adaptive Temporal Feature Resolutions}}, Booktitle = {{The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) }}, Year = {2021} }
1
基于时间特征的随机森林分类系统(语音 信号都可以) :最大值、最小值、峰峰值、均值、方差、均方值、均方根值等。有量纲特征值的数值大小常因外界一些物理量的变化而变化,给工程应用带来一定困难,因而时常使用多种无量纲指标,包括峰值因子、脉冲因子、裕度因子、峭度因子、波形因子和偏度等。 加上随机森林的分类技术研究
2022-05-30 19:08:34 1.15MB 随机森林 分类 文档资料 算法
为了解决传统网络管理方法不能适应网络复杂性、不能准确刻画网络异常行为的问题.采用一种基于时间特征的网络流量异常检测模型,研究分析网络流量的变化规律.利用指数平滑预测算法对未来网络流量进行预测,利用中心极限定理并结合实际经验确定动态的网络流量阈值,对当前和未来的网络流量异常进行检测.研究结果表明:当网络流量发生异常时,该模型能够进行有效的检测,能准确地描述网络的运行状况.该算法提高了网络流量检测的智能性,具有较高的实用价值.
1