化处理,采用 Pearson 相关系数和 Wasserstein 距离来分析饮食习惯与健康的关联。主成分分析法被用来确定各个评价指标的权重,通过多目标模糊综合评判模型,得出居民饮食习惯的综合评判值,进而揭示存在的问题。
对于问题二,我们需要探讨生活习惯和饮食习惯是否与个体的社会属性(如年龄、性别、婚姻状况、文化程度、职业等)相关。通过量化这些生活习惯和饮食习惯的评价指标,然后计算与个人属性的协方差矩阵和相关系数,可以识别出各因素之间的相关性和相关程度。
问题三关注的是慢性病与生活习惯多个因素之间的关系。通过灰色关联分析法,我们可以量化吸烟、饮酒、饮食习惯、生活习惯、工作性质和运动等因素与常见慢性病的相关程度。接着,采用二分类 BP 神经网络构建模型,揭示这些因素与慢性病发病的关系。
至于问题四,我们基于问题三的结果,对居民进行分类,比如分为患病但饮食健康、患病且饮食不健康、不患病且饮食健康和不患病但饮食不健康四类。利用支持向量机(SVM)进行二分类,为每类居民提供定制的健康改善建议,包括膳食调整和运动方案。此外,通过灵敏度检验确保模型的稳定性和有效性。
总结来说,这篇论文运用了多种数学建模方法,包括主成分分析、模糊综合评判、灰色关联分析和神经网络,对城市居民的健康状况进行了深度研究。通过量化和分析饮食习惯,找出不合理之处;探究生活习惯和饮食习惯与个体特征的联系;接着,分析慢性病与生活习惯多因素的关联;为不同健康状态的居民提供个性化建议。这些方法的应用有助于理解影响城市居民健康的复杂因素,并为公共卫生政策的制定提供科学依据。关键词涉及的灰色关联分析法、主成分分析法、多目标模糊综合评判法和二分类 BP 神经网络,都是解决此类问题的关键工具,它们的结合使用展示了数学建模在解决实际问题中的强大能力。
2024-08-27 10:18:30
1.29MB
毕业设计
1