《3D数学基础:图形与游戏开发 第2版》是一本深入探讨3D图形学及其在游戏开发中应用的专业教程。这份英文版的PPT,虽然缺失了第9章和第10章的内容,但仍然提供了丰富的理论知识和技术细节,对于想要在3D图形编程领域深化理解的人来说,是一份宝贵的参考资料。 3D数学是计算机图形学的基础,它包括向量、矩阵、坐标系统、变换、几何建模等核心概念。以下是一些关键的知识点: 1. **向量**:向量是3D空间中的一个重要概念,表示有方向和大小的量。它们在游戏开发中用于表示位置、速度、力等。向量的加减、标量乘法、点乘和叉乘是基本的运算,其中点乘用于计算两个向量的夹角,叉乘得到一个新的法向量。 2. **矩阵**:矩阵在3D图形中用于表示变换,如平移、旋转、缩放。4x4的矩阵常用于组合这些变换,形成一个复合变换。矩阵乘法遵循特定的顺序规则,即先进行局部变换,然后是世界变换,最后是观察(相机)变换。 3. **坐标系统**:理解局部坐标系、世界坐标系和观察坐标系的概念至关重要。每个物体都有自己的局部坐标系,用于定义其内部结构;世界坐标系是所有物体共享的大环境;观察坐标系则反映了相机的视角。 4. **变换**:3D物体的位置、旋转和大小改变通常通过变换实现。平移变换通过向量进行,旋转可以用欧拉角或四元数表示,缩放则是对每个轴的长度进行独立调整。 5. **几何建模**:包括多边形建模、曲线曲面建模等,用于创建复杂的3D形状。多边形是最常见的基本形状,而NURBS(非均匀有理B样条)和细分表面技术可以创建更平滑的模型。 6. **光照和着色**:3D图形的视觉效果很大程度上取决于光照和着色模型。基础的光照模型如Lambertian模型考虑了物体表面的漫反射,而Phong模型增加了镜面反射和环境光的成分。着色器是实现这些效果的关键,从固定管线到现在的着色器语言(如GLSL),开发者可以直接控制像素级别的渲染。 7. **视锥体裁剪和投影**:为了提高效率,只有在视锥体内的物体才会被渲染。视锥体裁剪确保了不必要的几何体不会进入渲染管线。接着,物体从3D空间投射到2D屏幕空间,这涉及到透视投影和平行投影两种方式。 8. **深度缓冲**:深度缓冲(Z-Buffer)是解决多个物体在同一像素位置重叠问题的技术,通过比较每个像素的深度值来决定哪些像素应该显示。 9. **纹理映射**:纹理是为3D模型添加细节的重要手段,通过将2D图像贴在3D模型的表面上,可以模拟各种材质和图案。 10. **碰撞检测**:在游戏开发中,判断物体之间的碰撞是必不可少的,有简单的轴对齐包围盒(AABB)检测,也有更复杂的球体、胶囊和多边形碰撞检测方法。 尽管这个PPT可能缺少了第9章和第10章,但从上述内容可以看出,3D数学在图形学和游戏开发中的应用是多方面的,涵盖了许多高级主题。通过学习这些知识,开发者可以创建出更真实、更交互的3D环境和体验。
2025-09-07 09:40:37 40.83MB
1
根据提供的信息,我们可以了解到这是一本关于应用数学基础的学习指导书籍,主要面向工科硕士研究生。本书由天津大学出版社出版,作者为曾绍标。接下来,我们将深入探讨这本书可能涵盖的一些核心知识点,并对这些知识点进行详细的阐述。 ### 应用数学基础知识 #### 一、线性代数 线性代数是工程科学中极为重要的一个分支,它在信号处理、图像处理、控制理论等多个领域有着广泛的应用。本章节将介绍向量空间、矩阵运算、特征值与特征向量等基本概念及其应用方法。 #### 二、概率论与数理统计 概率论与数理统计为理解和分析随机现象提供了理论基础。本章节将涵盖概率的基本概念、随机变量及其分布、大数定律、中心极限定理等内容,并探讨如何利用这些理论来解决实际问题。 #### 三、数值计算方法 数值计算方法是现代科学技术不可或缺的一部分。本章节将涉及插值法、数值积分、微分方程数值解法等主题。通过这些方法,可以有效地求解复杂的数学模型。 #### 四、优化理论 优化理论旨在寻找最有效的解决方案。本章节将讲述线性规划、非线性规划、动态规划等多种优化方法及其应用场景,帮助读者掌握构建和求解优化问题的基本技能。 #
2025-04-24 16:10:11 1.73MB 习题解答 工科研究生
1
### 信息安全数学基础知识点解析 #### 一、整数的可除性理论 **知识点1:整数可除性的基本概念** 整数可除性是数论中的一个重要概念,主要研究整数之间的倍数关系。如果整数a可以被整数b整除,那么我们说b是a的因数或约数,记作b|a。 **知识点2:证明整数n被70整除** 题目给出:若整数n同时满足2|n、5|n、7|n,则证明70|n。 **解析:** 1. **第一步**:因为2|n,可以表示为n = 2k,其中k ∈ Z。 2. **第二步**:又因为5|n,所以5|2k,由于5与2互质,故5|k,即k = 5k₁,其中k₁ ∈ Z。 3. **第三步**:因为7|n,所以7|2 * 5k₁,同样地,7与10互质,因此7|k₁,即k₁ = 7k₂,其中k₂ ∈ Z。 4. **结论**:可以得出n = 2 * 5 * 7k₂ = 70k₂,其中k₂ ∈ Z,因此70|n。 **知识点3:证明a³ - a能被3整除** 对于任意整数a,证明a³ - a能被3整除。 **解析:** 1. **分情况讨论**:考虑a被3除的三种情况:a = 3k、a = 3k - 1、a = 3k + 1,其中k ∈ Z。 - 当a = 3k时,a³ - a = (3k)³ - 3k = 27k³ - 3k = 3(9k³ - k),显然能被3整除。 - 当a = 3k - 1时,a³ - a = (3k - 1)³ - (3k - 1) = 27k³ - 27k² + 9k - 1 - 3k + 1 = 3(9k³ - 9k² + 2k),也能被3整除。 - 当a = 3k + 1时,a³ - a = (3k + 1)³ - (3k + 1) = 27k³ + 27k² + 9k + 1 - 3k - 1 = 3(9k³ + 9k² + 2k),同样能被3整除。 2. **结论**:无论哪种情况,a³ - a都能被3整除。 **知识点4:证明任意奇数的平方形如8k+1** 证明任意奇整数的平方形如8k+1。 **解析:** 1. **假设**:任意奇整数可表示为2k₀ + 1,其中k₀ ∈ Z。 2. **推导**:(2k₀ + 1)² = 4k₀² + 4k₀ + 1 = 4k₀(k₀ + 1) + 1。 3. **分析**:由于k₀与k₀ + 1为连续整数,必然有一个为偶数,所以k₀(k₀ + 1) = 2k,其中k ∈ Z。 4. **结论**:因此,(2k₀ + 1)² = 8k + 1,即任意奇整数的平方形如8k+1。 **知识点5:证明(a-1)a(a+1)能被6整除** 对于任意整数a,证明(a-1)a(a+1)能被6整除。 **解析:** 1. **分解**:(a-1)a(a+1) = a³ - a。 2. **应用已知**:根据前面的知识点2,a³ - a能被3整除。 3. **分析**:任意三个连续整数中必有一个是偶数,因此(a-1)a(a+1)也必能被2整除。 4. **结论**:由于(a-1)a(a+1)能同时被2和3整除,且2和3互质,因此(a-1)a(a+1)能被6整除。 以上内容涵盖了《信息安全数学基础》一书中关于整数可除性的一些基本知识点及其证明方法,通过这些例子可以帮助读者更好地理解和掌握整数可除性的理论基础。
2025-04-14 20:08:21 178KB 信息安全数学基础,课后答案
1
机器学习数学基础:线性代数+微积分+概率统计+优化算法 机器学习作为现代科技的璀璨明珠,正在逐渐改变我们的生活。而在这背后,数学扮演着至关重要的角色。线性代数、微积分、概率统计和优化算法,这四大数学领域为机器学习提供了坚实的理论基础。 线性代数是机器学习中的基础语言。矩阵和向量作为线性代数中的核心概念,是数据表示和计算的基础。在机器学习中,我们经常需要将数据转化为矩阵形式,通过矩阵运算提取数据的特征。特征提取是机器学习模型训练的关键步骤,而线性代数则为我们提供了高效处理数据的工具。 微积分则是机器学习模型优化的得力助手。在机器学习中,我们通常需要找到一种模型,使得它在给定数据集上的性能达到最优。这就需要我们对模型进行求导,分析模型参数对性能的影响,进而调整参数以优化模型。微积分中的导数概念为我们提供了分析模型性能变化的方法,帮助我们找到最优的模型参数。 概率统计则是机器学习数据处理和模型评估的基石。在机器学习中,数据往往带有噪声和不确定性,而概率统计可以帮助我们评估数据的分布和特征,进而构建更加稳健的模型。同时,概率统计也为我们提供了模型评估的方法,通过计算模型的准确率、召回率 ### 机器学习数学基础详解 #### 一、线性代数基础 **1.1 向量和矩阵** - **1.1.1 标量、向量、矩阵、张量之间的联系** 标量、向量、矩阵和张量是线性代数中的基本概念,它们之间存在着紧密的联系。 - **标量(Scalar)**:一个单独的数字,没有方向。 - **向量(Vector)**:一组有序排列的数字,通常用来表示方向和大小。 - **矩阵(Matrix)**:一个二维数组,由行和列组成的数据结构。 - **张量(Tensor)**:一个更高维度的数组,它可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。 **联系**:标量可以视为0维张量;向量是一维张量;矩阵是二维张量;更高维度的数组称为张量。 - **1.1.2 张量与矩阵的区别** - **代数角度**:矩阵是二维张量,而更高维度的张量则包含了更复杂的数据结构。 - **几何角度**:矩阵和向量都是不变的几何量,不随参照系的变化而变化。张量也可以用矩阵形式来表达,但其可以扩展到更高的维度。 - **1.1.3 矩阵和向量相乘结果** 当一个矩阵与一个向量相乘时,可以理解为矩阵的每一行与向量相乘的结果构成新的向量。 - 例如,如果有一个$m \times n$的矩阵$A$与一个$n \times 1$的向量$x$相乘,结果将是一个$m \times 1$的向量$y$,其中每个元素$y_i = \sum_{j=1}^{n} a_{ij}x_j$。 - **1.1.4 向量和矩阵的范数归纳** 向量的范数是衡量向量大小的一种标准。 - **向量的1范数**:向量各分量的绝对值之和。 - 对于向量$\vec{x} = (x_1, x_2, ..., x_n)$,其1范数定义为$||\vec{x}||_1 = |x_1| + |x_2| + ... + |x_n|$。 - **向量的2范数**:也称为欧几里得范数,是各分量平方和的开方。 - $||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$。 - **向量的无穷范数**:向量各分量的最大绝对值。 - $||\vec{x}||_\infty = \max(|x_1|, |x_2|, ..., |x_n|)$。 **1.2 导数和偏导数** - **1.2.1 导数偏导计算** 导数用于描述函数在某一点处的变化率,而偏导数则是多元函数关于其中一个自变量的变化率。 - **1.2.2 导数和偏导数有什么区别?** - **导数**:对于单一自变量的函数$f(x)$,导数$f'(x)$描述了该函数在$x$点处的切线斜率。 - **偏导数**:对于多变量函数$f(x_1, x_2, ..., x_n)$,偏导数$\frac{\partial f}{\partial x_i}$描述了当保持其他变量不变时,$f$关于$x_i$的变化率。 **1.3 特征值和特征向量** - **1.3.1 特征值分解与特征向量** 特征值和特征向量是线性代数中的重要概念,用于理解和简化矩阵。 - **特征值**:如果存在非零向量$\vec{v}$使得$A\vec{v} = \lambda\vec{v}$,那么$\lambda$就是矩阵$A$的一个特征值。 - **特征向量**:满足上述等式的非零向量$\vec{v}$。 - **1.3.2 奇异值与特征值的关系** - **奇异值**:对于任何矩阵$A$,其奇异值是$A^\top A$(或$AA^\top$)的特征值的平方根。 - **关系**:奇异值和特征值在特定情况下相同,尤其是在正交矩阵和对称矩阵中。 #### 二、微积分基础 - **1.2 导数和偏导数**(已在上文提到) - **1.3 特征值和特征向量**(已在上文提到) #### 三、概率统计基础 **1.4 概率分布与随机变量** - **1.4.1 机器学习为什么要使用概率** 在机器学习中,概率用于描述数据的不确定性,并提供了一种量化方式来预测未来事件的可能性。 - **1.4.2 变量与随机变量有什么区别** - **变量**:可以取多种不同值的量。 - **随机变量**:变量的一种特殊类型,其值是根据某个概率分布随机确定的。 - **1.4.3 随机变量与概率分布的联系** - 随机变量的每个可能值都对应一个概率,这些概率构成了随机变量的概率分布。 - **1.4.4 离散型随机变量和概率质量函数** - **离散型随机变量**:只能取有限个或可数无限个值的随机变量。 - **概率质量函数**:描述离散型随机变量各个值的概率。 - **1.4.5 连续型随机变量和概率密度函数** - **连续型随机变量**:可以取区间内的任意值的随机变量。 - **概率密度函数**:描述连续型随机变量在某一区间的概率密度。 - **1.4.6 举例理解条件概率** - 条件概率$P(A|B)$表示在事件$B$已经发生的条件下,事件$A$发生的概率。 - 例如,假设在一个班级中,$P(\text{女生}) = 0.5$,$P(\text{女生|戴眼镜}) = 0.6$,意味着在戴眼镜的学生中,60%是女生。 - **1.4.7 联合概率与边缘概率联系区别** - **联合概率**:两个事件同时发生的概率。 - **边缘概率**:单个事件发生的概率。 - **联系**:联合概率可以通过边缘概率和条件概率计算得出。 - **1.4.8 条件概率的链式法则** - 条件概率的链式法则描述了如何通过一系列条件概率来计算联合概率。 - 例如,$P(A,B,C) = P(C|A,B)P(B|A)P(A)$。 - **1.4.9 独立性和条件独立性** - **独立性**:两个事件$A$和$B$独立,如果$P(A|B) = P(A)$且$P(B|A) = P(B)$。 - **条件独立性**:事件$A$和$B$在已知事件$C$的情况下条件独立,如果$P(A|B,C) = P(A|C)$。 **1.5 常见概率分布** - **1.5.1 Bernoulli分布** - 描述只有两种可能结果的随机试验(如成功或失败)的概率分布。 - 参数$p$表示成功的概率,失败的概率为$1-p$。 - **1.5.2 高斯分布** - 又称正态分布,是一种非常常见的连续概率分布。 - 参数$\mu$代表均值,$\sigma^2$代表方差。 - **1.5.3 何时采用正态分布** - 正态分布广泛应用于自然和社会科学领域,特别是在中心极限定理的支持下,很多随机变量可以近似为正态分布。 - **1.5.4 指数分布** - 描述事件发生的时间间隔的分布。 - 参数$\lambda$表示事件发生的平均频率。 - **1.5.5 Laplace 分布** - 也是一种连续概率分布,具有比高斯分布更重的尾部。 - 参数$\mu$代表均值,$b$代表尺度参数。 - **1.5.6 Dirac分布和经验分布** - **Dirac分布**:一个概率质量集中在单个点的分布。 - **经验分布**:基于观测数据的分布,反映了数据的真实概率分布情况。 **1.6 期望、方差、协方差、相关系数** - **1.6.1 期望** - 期望是对随机变量取值的加权平均。 - 对于离散型随机变量,期望定义为$E[X] = \sum x_i p(x_i)$。 - **1.6.2 方差** - 方差衡量随机变量与其期望值之间的偏差程度。 - 定义为$Var(X) = E[(X-E[X])^2]$。 - **1.6.3 协方差** - 协方差描述两个随机变量之间的线性相关性。 - 定义为$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$。 - **1.6.4 相关系数** - 相关系数是标准化后的协方差,用于衡量两个变量的相关强度。 - 定义为$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$,其中$\sigma_X$和$\sigma_Y$分别是$X$和$Y$的标准差。 通过以上详细的介绍,我们可以看到,线性代数、微积分、概率统计和优化算法在机器学习中的应用极为广泛,它们为机器学习提供了坚实的数学基础。掌握这些基础知识对于深入理解机器学习算法至关重要。
2024-08-23 11:30:23 852KB 机器学习 线性代数
1
《人工智能数学基础资源》是由唐宇迪编著的,涵盖了人工智能学习中不可或缺的数学基础知识,包括习题答案和源代码,旨在帮助读者深入理解和应用这些数学概念。这个资源包是学习人工智能的重要参考资料,特别是对于那些希望在AI领域深造的学生和从业者。 1. **线性代数**:线性代数是人工智能的基础,特别是在处理多维数据时。它包括向量、矩阵、行列式、特征值、特征向量、逆矩阵、秩、线性空间和线性变换等概念。在机器学习中,线性代数用于构建模型,如神经网络的权重矩阵、PCA降维、SVD分解等。 2. **概率论与统计**:概率论提供了处理不确定性和随机性事件的理论框架,而统计学则用于从数据中提取信息。主要知识点包括概率分布(伯努利、正态、泊松等)、条件概率、贝叶斯定理、大数定律和中心极限定理。在机器学习中,概率模型如高斯混合模型和马尔可夫模型广泛使用,统计推断用于参数估计和假设检验。 3. **微积分**:微积分是理解函数变化和优化问题的关键。在深度学习中,梯度下降法就是基于微积分中的导数概念,用于找到损失函数的最小值。此外,多元微积分涉及偏导数、梯度、方向导数和泰勒公式,对于理解和构建复杂的非线性模型至关重要。 4. **最优化理论**:优化是人工智能的核心,涉及寻找函数的极值点。常见的优化算法有梯度下降、牛顿法、拟牛顿法(如BFGS和L-BFGS)以及随机梯度下降等。这些方法在训练神经网络时调整权重和偏置,以最小化预测误差。 5. **图论与组合优化**:图论在机器学习中用于处理关系网络,如社交网络分析、推荐系统等。组合优化问题如旅行商问题、最小生成树等,被应用于路径规划和资源分配。 6. **离散数学**:离散数学包括集合论、逻辑、图论、组合数学等内容,为计算机科学提供基础。在人工智能中,离散结构如二叉树、图和图算法(如Dijkstra算法、Floyd-Warshall算法)用于解决搜索问题和决策问题。 7. **动态规划**:动态规划是一种求解最优化问题的有效方法,常用于序列建模和规划问题。在自然语言处理和图像识别等领域,动态规划算法如Viterbi算法和K-means聚类等被广泛应用。 8. **源代码**:资源包中的源代码可能是对以上数学概念的实际实现,可以帮助读者更好地理解理论知识,并将其转化为实际解决问题的能力。通过阅读和实践代码,可以提升编程技能,加深对人工智能算法的理解。 这个资源包为学习者提供了一个全面的平台,不仅可以学习理论知识,还可以通过解答习题和查看源代码进行实践,从而在人工智能的道路上更进一步。
2024-08-14 17:00:58 6.41MB 人工智能
1
3D数学基础_图形与游戏开发 习题答案 3D Math Primer For Graphics And Game Development
2024-07-01 21:55:31 2.2MB 习题答案
1
信息安全数学基础(第二版)课件和习题答案.rar
2024-05-28 09:40:47 33.84MB 信息安全 信息安全数学基础
1
主要是该本书的课后习题答案,讲解相对比较详细。
2024-05-28 09:27:54 717KB 信息安全数学基础课后答案
1
线性空间与线性变化.pdf
2023-12-31 12:55:02 884KB 思维导图 工程数学基础
1
人工智能(Artificial Intelligence,AI)是一门涉及到多个学科的交叉领域,其中数学基础尤为重要。以下是人工智能需要学习的数学基础: 概率论和统计学:概率论和统计学是人工智能中最重要的数学基础之一,因为大部分的机器学习算法都是基于概率和统计学理论。 线性代数:线性代数是人工智能中最基础的数学学科之一,因为它是计算机科学和人工智能中各种算法的基础。 微积分:微积分是人工智能中广泛应用的数学学科,特别是在深度学习领域。 最优化理论:最优化理论是人工智能中广泛应用的数学学科,它包括线性规划、非线性规划、凸优化等多种分支。例如,在机器学习中,很多问题都可以转化为最优化问题,例如参数调整、损失函数优化等。 本资源为人工智能+数学基础+资源合集,有兴趣的朋友可以下载学习。 离散数学:离散数学是人工智能中非常重要的数学学科之一,因为它涉及到计算机科
2023-10-08 17:18:39 24.47MB 人工智能 数学
1