PaddleOCRSharp的例子,直接运行识别数字,注释详细,用于自学深度学习。PaddleOCRSharp是基于PaddleOCR的C++代码修改并封装的.NET工具类库,支持文本识别、文本检测、基于文本检测结果的统计分析的表格识别功能。 PaddleOCRSharp封装极其简化,实际调用仅几行代码,极大的方便了中下游开发者的使用和降低了PaddleOCR的使用入门级别,同时提供不同的.NET框架使用,方便各个行业应用开发与部署。Nuget包即装即用,可以离线部署,不需要网络就可以识别的高精度中英文OCR。 本项目中PaddleOCR.dll文件是基于开源项目PaddleOCR的C++代码修改而成的C++动态库,基于opencv的x64编译而成的。 本项目只能在X64的CP 讲解文章:https://blog.csdn.net/m0_55074196/article/details/131895065?utm_source%20=%20uc_fansmsg github链接:https://github.com/raoyutian/PaddleOCRSharp/tree/main
2025-05-12 13:16:55 103.03MB 深度学习 数字识别
1
内容概要:本文详细介绍了基于FPGA(现场可编程门阵列)实现数字识别、视频采集及实时显示到VGA显示屏的技术过程。首先阐述了FPGA的强大之处及其在数字信号处理领域的优势。接着分别讲解了数字识别、视频采集和VGA显示的具体实现方法,包括Verilog代码示例、硬件接口配置、图像处理算法优化等内容。文中还分享了许多实际开发中的经验和技巧,如摄像头配置、图像预处理、VGA时序控制等。 适合人群:对FPGA开发感兴趣的电子工程技术人员、嵌入式系统开发者、数字电路爱好者。 使用场景及目标:适用于需要进行图像处理、数字识别和实时显示的应用场合,如工业检测、安防监控、教育实验等。目标是帮助读者掌握基于FPGA的完整图像处理链路的设计与实现。 其他说明:文章不仅提供了详细的理论解释和技术细节,还结合了作者的实际开发经验,给出了许多实用的调试建议和优化方法。对于初学者来说,可以通过本文快速入门FPGA开发;而对于有一定基础的开发者,则可以获得更多的实战经验和灵感。
2025-05-07 09:51:23 676KB
1
基于MATLAB的交通限速标志智能识别系统:从图像预处理到数字精准识别的一站式解决方案,"基于MATLAB的交通限速标志识别系统:从图像预处理到数字识别的全流程实战",基于matlab的交通限速标志识别系统 【标志识别】计算机视觉,数字图像处理常见实战项目。 过程:图像预处理,标志定位,数字分割,数字识别,结果展示。 输入生活中常见的限速标志图片,系统根据限速标志的位置进行定位识别,并且识别限速标志中的数字。 包远程调试,送报告(第062期) ,基于Matlab;交通限速标志识别系统;计算机视觉;数字图像处理;图像预处理;标志定位;数字分割;数字识别;远程调试;报告。,MATLAB交通限速标志自动识别系统:图像处理与结果展示
2025-04-24 21:19:27 704KB
1
内容概要:本文详细介绍了基于Matlab GUI界面的手写体数字识别系统的实现过程。该系统主要分为四个部分:首先是图像预处理,包括二值化、噪声处理、图像分割、归一化和细化等步骤,确保输入图像的质量;其次是特征提取,将处理后的图像转化为可用于机器学习的特征向量;再次是BP神经网络的构建与训练,用于对手写体数字进行分类识别;最后是Matlab GUI界面的设计,提供用户友好型的操作环境。文中不仅给出了详细的代码示例和技术解析,还展示了系统的实验结果及其在实际应用场景中的表现。 适合人群:对图像处理、机器学习感兴趣的初学者,尤其是希望了解如何使用Matlab实现简单AI项目的开发者。 使用场景及目标:适用于需要快速搭建手写体数字识别原型的研究人员或学生项目。通过该项目,学习者可以掌握从图像采集到模型部署的完整流程,同时加深对BP神经网络的理解。 其他说明:作者强调了预处理对于提高识别精度的重要性,并分享了一些实践经验,如选择合适的滤波器尺寸、调整神经网络层数等技巧。此外,文中提到未来可以探索的方向,例如引入更先进的深度学习算法以进一步提升系统的鲁棒性和准确性。
2025-04-22 14:53:45 391KB
1
标题 "MATLAB神经网络手写数字识别(GUI,论文).zip" 提供的信息表明,这是一个使用MATLAB实现的手写数字识别系统,该系统可能包括一个图形用户界面(GUI)和相关的理论研究论文。MATLAB是一种强大的编程环境,特别适合进行数值计算、符号计算以及数据可视化,因此它是构建神经网络模型的理想选择。手写数字识别是模式识别领域的一个经典问题,常见的应用如光学字符识别(OCR),在自动读取邮政编码或银行支票数字时非常有用。 描述中提到,资源包含可运行的源码,并且已经过本地编译,这意味着下载后只需按照文档说明配置好环境即可运行。这表明项目不仅有代码实现,还可能有详细的指导文档,帮助用户理解代码结构和功能,以及如何设置和运行项目。资源被专业教师审定,确保了内容的准确性和完整性,适合于计算机科学和技术的学生进行毕业设计或者作为学习参考。 标签中提及的"计算机毕设"和"管理系统"暗示了这个项目可能是一个完整的毕业设计,它可能涉及到了数据管理的某些方面,尽管手写数字识别主要关注的是算法和机器学习。"编程"标签则进一步证实了这个项目的核心是软件实现,尤其是使用MATLAB进行编程。 在压缩包内的文件 "project_code_01" 很可能是一个项目的初始代码部分,或者是按照某种逻辑划分的代码模块。通常,这样的代码文件会包含实现神经网络模型的MATLAB脚本,以及可能的数据预处理、训练、测试等相关函数。 这个MATLAB项目涵盖了以下几个关键知识点: 1. **神经网络**:项目可能基于反向传播(BP)神经网络、卷积神经网络(CNN)或其他深度学习模型来识别手写数字。 2. **图像处理**:在识别之前,可能需要对图像进行预处理,如灰度化、二值化、降噪等。 3. **数据集**:可能使用了MNIST或类似的数据集,这是手写数字识别的基准数据集。 4. **GUI设计**:MATLAB的GUIDE工具可用于创建用户界面,用户可以通过界面上传手写数字图片进行识别。 5. **训练与优化**:包括网络结构的调整、学习率的选择、损失函数的定义以及优化算法(如梯度下降)的应用。 6. **模型评估**:使用准确率、混淆矩阵等指标评估模型性能。 7. **代码组织与文档**:良好的代码结构和注释,以及配套的使用文档,对于理解和复现项目至关重要。 通过学习和实践这个项目,学生不仅可以掌握MATLAB编程,还能深入理解神经网络的工作原理,以及如何将理论知识应用于实际问题的解决。
1
内容概要:本文档介绍了一个基于MATLAB环境开发的手写数字识别系统。它提供了一个用户友好的GUI接口供用户上传图片,并详细介绍了系统的实现步骤,涵盖了图像读取与预处理、关键特征的提取以及数字识别等多个方面,并最终展示了如何利用已有的模型在GUI环境中展示数字识别结果;同时提供了关于项目的扩展可能性的讨论。 适用人群:对图像处理感兴趣的研究者,有基础MATLAB使用者,图像识别和模式识别的学习者。 使用场景及目标:本系统旨在为图像识别的应用程序开发提供示范指导,特别适用于对手写数字进行自动分类的应用。此外,也可作为初学者理解和探索机器学习和图像识别技术的教学案例。 其他说明:项目还包括了对系统功能扩展的一些讨论,比如采用更复杂的模型,实现实时识别等功能以提高其性能和适用性。
2025-04-11 11:53:28 24KB 图像处理 GUI应用程序 MATLAB
1
标题中的"SVM手写数字识别"指的是支持向量机(Support Vector Machine,简称SVM)在手写数字识别领域的应用。SVM是一种监督学习模型,主要用于分类和回归分析,尤其在小样本数据集上表现优秀。手写数字识别是模式识别领域的一个经典问题,常见于OCR(光学字符识别)系统,例如自动读取邮政编码或银行支票上的手写数字。 MATLAB是一种广泛使用的编程环境,特别适合于数值计算和数据分析,包括机器学习任务。在本项目中,MATLAB被用作实现SVM手写数字识别的工具。它提供了方便的SVM函数库,如fitcsvm,可以用于训练和优化模型,以及predict函数来对新数据进行预测。 描述中的"MATLAB"提示我们,我们将使用MATLAB的内置函数和工具箱来实现SVM模型。这可能涉及到以下步骤: 1. **数据预处理**:我们需要导入手写数字的数据集,可能是如MNIST这样的标准数据集,包含大量的手写数字图像。这些图像通常需要进行灰度化、归一化和尺寸规范化等预处理步骤,以便输入到SVM模型中。 2. **特征提取**:由于SVM处理的是向量形式的数据,我们需要将图像转换为特征向量。常见的方法是使用像素强度作为特征,或者使用更高级的方法,如局部二值模式(LBP)、高阶统计特征或图像的直方图。 3. **构建SVM模型**:利用MATLAB的`fitcsvm`函数,我们可以创建一个SVM分类器,选择合适的核函数(如线性、多项式、RBF等),并调整正则化参数C和核函数参数γ。 4. **模型训练**:将预处理后的数据分为训练集和验证集,使用训练集数据训练SVM模型,并通过交叉验证来优化参数,确保模型的泛化能力。 5. **模型评估**:使用验证集评估模型的性能,如准确率、精确率、召回率和F1分数等指标。 6. **预测与测试**:使用测试集数据检验模型的预测能力,确认模型在未见过的数据上的表现。 标签"matlabSVM"进一步强调了我们将重点讨论如何在MATLAB环境中实现SVM算法。在实际操作中,MATLAB提供了详细的文档和示例代码,帮助用户理解和应用SVM。 压缩包内的"88760SVM手写数字识别"可能是源代码文件,包含了上述过程的MATLAB脚本。通过阅读和运行这些代码,你可以深入理解SVM如何应用于手写数字识别,以及MATLAB在处理此类问题时的灵活性和效率。 这个项目提供了一个很好的机会,让你实践机器学习中的分类问题,特别是理解和支持向量机在解决复杂模式识别任务中的强大功能。通过完成这个项目,你不仅可以掌握SVM的基本概念,还能增强在MATLAB环境下处理实际问题的能力。
2024-11-22 15:23:00 10.96MB
1
卷积和全连接神经网络实现手写数字识别 本文档介绍了使用卷积神经网络和全连接神经网络实现手写数字识别的方法。文档中首先介绍了实验的内容和实验原理,然后详细讲解了全连接神经网络和卷积神经网络的原理和结构。文档还提供了实验步骤,指导读者如何使用 Keras 实现手写数字识别。 一、实验内容 本实验的目的是使用 Keras 实现手写数字识别。实验中,我们将使用 MNIST 数据集,该数据集包含 60000 张手写数字图片,每张图片的大小是 28x28 个像素点。我们将使用全连接神经网络和卷积神经网络两种方法来实现手写数字识别。 二、实验原理 ### 2.1 数据集 MNIST 数据集是手写数字识别的常用数据集。每张图片由 28x28 个像素点构成,每个像素点用一个灰度值表示。可以将这 28x28 个像素展开为一个一维的行向量,作为输入,也就是有 784x1 的向量。 ### 2.2 神经元 人工神经网络(ANN,Artificial Neuron Network)是模拟生物大脑的神经网络结构,它是由许多称为人工神经细胞(Artificial Neuron,也称人工神经元)的细小结构单元组成。简易模型如下所示: x1 … xn:表示神经细胞的输入,也就是输入神经细胞的信号。 w1 … wn:表示每个输入的权重,就好比生物神经网络中每个轴突和树突的连接的粗细,强弱的差异。 b:偏置权重 threshold:偏置(可以将 threshold * b 看作是前面提到的生物神经细胞的阈值) 蓝色部分:细胞体。 黄色球形是所有输入信号以的求和。 红色部分是表示求和之后的信号的激励函数(即达到阈值就处于兴奋状态,反之抑制,当然作为人工神经细胞,其激励函数很多,阶跃(型)激励函数,sigmoid(s 型)激励函数,双曲正切(tanh)激励函数,ReLu(Rectified Linear Units)激励函数等等) ### 2.3 全连接神经网络 全连接神经网络模型是一种多层感知机(MLP),感知机的原理是寻找类别间最合理、最具有鲁棒性的超平面,感知机最具代表的是 SVM 支持向量机算法。神经网络同时借鉴了感知机和仿生学,神经元接受一个信号后会发送各个神经元,各个神经元接受输入后根据自身判断,激活产生输出信号后汇总从而实现对信息源实现识别、分类。 包含两个隐藏层的神经元网络结构如下: 每个结点和下一层所有几点都有运算关系,实践中全连接神经网络通常有多个隐藏层,增加隐藏层可以更好的分离数据的特征,但过多的隐藏层也会增加训练时间以及会产生过拟合。 训练神经网络中需要使用 bp 算法,先是通过前向传播,得到预测结果,再反向传播去调整模型权重。反向传播:反向传播根据前向传播产生的损失函数值,沿输出端向至输入端优化每层之间参数,在此过程中运算利用梯度下降法优化参数,神经网络求解参数本质上仍然是规则中求最优解问题,现在的机器学习框架如 Tensorflow、pytorch、keras 将梯度下降法、Booting、Bagging 这些优化中常用技巧封装起来,我们只用关注数据建模即可。 ### 2.4 卷积神经网络 卷积神经网络可以利用空间结构关系减少需要学习的参数量,提高反向传播算法的训练效率。一般的 CNN 有多个卷积层构成,每个卷积层会进行如下操作: 图像通过多个不同的卷积核的滤波,并加偏置(bias),提取出局部特征,每一个卷积核会映射出一个新的 2D 图像。将前面卷积核的滤波输出结果进行非线性的激活函数处理。对激活函数的结果再进行池化操作(即降采样),目前一般是使用最大池化,保留最显著的特征,并提升模型的畸变容忍能力。 这几个步骤就构成最常见的卷积层,当然也可以在加上一个 LRN 层(Local Response Normalization,局部响应归一化层)。 CNN 的要点是卷积核的权值共享(Weight Sharing)、局部连接模式(Local Connection)和池化层(Pooling)中的降采样(Down-Sampling)。局部连接和权值共享降低了参数量,使训练复杂度大大下降,减轻过拟合并降低计算量。同时权值共享还赋予了 CNN 对平移的容忍性,而池化层降采样则进一步降低了输出层参数,并赋予模型轻度形变的容忍性,提高模型的泛化能力。 每个卷基层包含三个部分:卷积、池化和非线性激活函数使用卷积提取空间特征降采样的平均池化层、双曲正切或 S 型的激活函数、MLP 作为最后的分类器层与层之间的稀疏连接减少计算复杂度。 三、实验步骤 ### 3.1 全连接神经网络实现 1. 获取数据集 Keras 中集成了 MNIST 数据集,直接从其中导入数据,并对数据进行整理。从之可以看出,数据为 28*28,一共 60000 张。 2. 对数据集中的数据进行可视化 3. 对数据进行维度转换把每一张 28 x 28 的图片分别转为长度为 784 的向量,再合并成一个大的像素矩阵,每个维度表示一个像素点的灰度值/255。 4. 对输出结果进行格式转化将经过神经网络训练完后的内容,转化为 10 个类别的概率分布。 本文档介绍了使用卷积神经网络和全连接神经网络实现手写数字识别的方法。使用 Keras 实现手写数字识别可以使用 MNIST 数据集,并使用全连接神经网络和卷积神经网络两种方法来实现手写数字识别
1
1. 数据文件 train.csv 和 test.csv 包含手绘数字的灰度图像,从0到9 2.train.csv 有 label, test.csv 没有 3.每幅图像高28像素,宽28像素,总共784像素 4.每个像素都有一个与之关联的像素值,表示该像素的亮度或暗度,数字越大表示越暗 5.该像素值是0到255之间的整数,包括0和255
2024-08-13 19:43:04 15.25MB 数据集 手写数字识别 python 深度学习
1
现在在企业信息化办公中,用的最多就是微软的Office办公组合,Word、EXCEL、PPT等常用软件。这些软件虽然先进,但是也有其弊端,就是这些软件是产品,产品必然是要符合大部分的人的需要。而在这种信息化大潮当中,各样各业的企业如果想提高自己的工作效率,必然需要符合自己需要的软件公办工具。所以符合本公司自己流程的软件如雨后春笋般层出不穷,百家鸣放各行各业都有相应的专业软件。提高自己的工作效率,降低人力成本,是大势所趋。 基于python的手写数字识别系统的目的就是在于建立属于自己的一套手写识别系统,在日常的工作中,手写识别是一件非常重要的事情,比如说企业或事业单位当中。需要电子版的手签章,那么我们就可以在保存电子版手签章的同时,同样将手签的姓名或者是数字识别出来,保存到数据库当中,实现手签章与数据。对应一致性,这样可以很大程度地进行数据的校验。 关键词:手写数字识别系统;信息技术;python
2024-07-07 16:25:18 6.86MB python
1