宽电压工作9~36V,12025机种,42矽钢片,电流驱动模式,恒转速,自带过流、堵转保护,相电流可任意调整(矩形波、梯形波、正弦波、三角波),高效率,更静音应用领域:落地扇、桌面台扇、无刷直流散热扇备注:有相关类似应用,可提供技术支持LA6100关键特性 集成预驱动,直接驱动外部P+N半桥功率管 输入电压范围: 5~40V 相电流控制:高效率,静音,无过冲电压电流 SoftSW引脚设定相电流波形形状 自动超前角对准实现高效率和低反灌电源突波 软启动可配置 最小停转或维持转速可设定 最大转速可限定 自动重启堵转保护 FG&RD输出 封装TSSOP20L 应用领域:落地扇、桌面台扇、无刷直流散热
2025-07-14 11:58:14 1.37MB diy制作 电路设计方案 电路方案
1
激光器热效应仿真分析,端面泵浦固体激光器热效应仿真研究:热透镜、热焦距与散热分析,涉及多种波长激光器,端面泵浦 固体激光器热效应仿真 comsol 激光镜头热分布 热透镜 热焦距 散热分析 常规1064nm 532 457 226 355nm激光器 ,端面泵浦; 固体激光器热效应仿真; Comsol; 激光镜头热分布; 热透镜; 热焦距; 散热分析; 常规波长激光器,端面泵浦激光器热效应仿真及散热分析 激光器的热效应研究是现代激光技术中一个至关重要的领域,尤其是对于端面泵浦固体激光器而言。热效应是激光器工作中不可避免的现象,它与激光器的性能和寿命紧密相关。通过仿真分析,研究者可以深入理解激光器在工作过程中的温度分布、热透镜效应以及热焦距变化等现象,并设计有效的散热方案,以提高激光器的稳定性和效率。 在进行端面泵浦固体激光器热效应仿真时,研究者关注的焦点之一是热透镜效应。热透镜效应指的是激光器在泵浦光照射下,由于介质温度的不均匀分布,导致光束在介质中的传播路径发生变化,从而影响激光的聚焦和输出特性。这一效应对于高功率激光器的设计和优化至关重要。 热焦距是热透镜效应的直接体现,它描述了由于热效应导致的聚焦能力变化。在仿真分析中,研究者通常会计算不同工作条件下激光器的热焦距,以此评估热效应的影响程度,并对激光器的聚焦系统进行优化。 散热分析在端面泵浦固体激光器设计中同样占据着核心地位。散热效果的优劣直接关系到激光器的温度分布和热稳定性。仿真分析可以帮助设计出更高效的散热结构,确保激光器在高功率工作状态下仍然保持较低的温度,延长激光器的使用寿命。 此外,由于不同波长的激光器具有不同的光谱特性,研究者需要对不同波长下的热效应进行详细的分析。例如,常见的1064nm、532nm、457nm、226nm和355nm波长的激光器,在设计和仿真时都需要考虑其独特的热效应特征。 仿真工具Comsol是进行激光器热效应分析的强有力工具。它能够提供多物理场耦合仿真环境,使研究者可以模拟激光器在多种工作条件下的热效应。通过Comsol,研究者可以在不同材料、结构和泵浦功率等因素影响下,预测激光器的温度分布和热效应。 本研究的标题中提及的“端面泵浦固体激光器热效应仿真研究”是指对端面泵浦方式的固体激光器进行热效应的仿真分析。端面泵浦是指泵浦光从激光介质的一端输入,这种泵浦方式便于实现高效的泵浦功率传输,因此在高功率激光器中被广泛应用。 端面泵浦固体激光器热效应的研究是一个多方面、多层次的复杂问题。它不仅涉及到光学、热学和材料学等多个学科的知识,还需要仿真工具的支持。通过深入的仿真分析,研究者可以对激光器的热效应有更深入的认识,从而推动激光器技术的进步和发展。
2025-06-05 11:49:50 745KB edge
1
内容概要:本文详细介绍了如何利用Comsol软件进行端面泵浦固体激光器的热效应仿真。首先,通过建立几何模型和设定热源项,模拟了激光晶体内的温度分布。然后,探讨了热透镜效应及其对激光性能的影响,并提供了具体的热焦距计算方法。此外,文章深入讨论了不同波长激光器的特殊热特性以及优化散热结构的方法。文中还分享了许多实践经验,如避免常见错误、选择合适的网格密度和边界条件设置等。 适合人群:从事激光器研究与开发的技术人员,尤其是对热效应仿真感兴趣的科研工作者。 使用场景及目标:帮助研究人员理解和解决端面泵浦固体激光器中存在的热效应问题,提高激光器的工作稳定性和光束质量。具体应用场景包括但不限于新型激光器的设计验证、现有设备的性能提升以及故障排查。 其他说明:文章不仅提供了详细的理论解释和技术指导,还结合了大量的实际案例和经验教训,使读者能够更好地掌握热仿真技巧并在实践中加以应用。同时强调了实测数据对于模型校准的重要性。
2025-05-27 22:33:18 335KB
1
LED作为新一代绿色光源, 正在被广泛的应用于照明行业。对于LED灯具来说, 正常工作的前提是要具备良好的散热能力。利用CAE并结合正交分析法模拟分析了集成式大功率LED路灯散热器结构。通过分析翅片的高度、厚度、个数以及基板的长度、厚度、宽度等六个参数对其温度场的影响, 得出较优的结构参数组合, 使LED工作温度降低到要求温度以下,并使散热器的质量较轻。
2025-04-24 17:22:09 467KB 电源管理
1
在现代工业自动化与控制系统中,温度管理是确保设备稳定运行和延长使用寿命的关键因素之一。工业屏柜作为容纳和保护电子控制系统的主要结构,其内部温度的合理控制更是显得尤为重要。随着技术的进步,基于MCS-51单片机的工业屏柜散热方案设计为我们提供了一种高效的温度控制方案,通过精确的温度监控和智能的散热机制,有效地保障了工业设备的安全稳定运行,同时体现了节能环保的设计理念。 MCS-51单片机,作为8位微控制器的代表,其在温度控制方面的应用展现了卓越性能和可靠性。MCS-51系列单片机的集成AD转换功能,可以将模拟信号直接转换为数字信号,使得系统能实时地对温度进行监测和控制,这对于需要快速响应的工业应用来说至关重要。在本方案中,MCS-51单片机负责接收来自温度传感器的信号,并通过算法处理后作出相应的控制动作,如启动散热风扇,或关闭散热机制,以维持工业屏柜内部的温度在安全范围内。 为了实现对温度信号的精确采集,系统设计中选用了热电偶传感器。热电偶传感器的高精度和宽温度范围使其成为工业环境中温度监测的不二之选。其工作原理基于塞贝克效应,不同材料的导体在不同温度下会形成电动势差,通过测量这个电动势,可以非常精确地推算出对应的温度值。而转换后的模拟信号需要通过A/D转换电路转换为数字信号,以便单片机处理。本设计中采用了ADC0804芯片作为模数转换器,其转换精度和速度完全满足工业应用需求。 散热方案的硬件设计还包括了散热风扇的控制电路。根据MCS-51单片机输出的控制信号,散热风扇将适时地开启或关闭,这样不仅保障了设备的安全运行,也避免了无谓的能源消耗。此外,通过优化控制逻辑,可以进一步提高风扇的工作效率和响应速度。 软件设计上,基于模块化设计原则,系统被分为数据采集、数据处理和温度显示三个模块。数据采集模块负责从温度传感器和A/D转换电路获取数据;数据处理模块根据预设的安全阈值对采集到的温度数据进行分析,并作出控制决策;温度显示模块则将当前的温度状况直观地展示给操作者。这种模块化的设计方式使得系统更加灵活,便于后期维护和升级,同时简化了调试过程,提高了系统的可靠性和稳定性。 总而言之,基于MCS-51单片机的工业屏柜散热方案,通过软硬件的紧密配合和智能化的控制策略,有效地实现了温度的实时监控和智能管理,不仅确保了工业屏柜内部设备在各种复杂工况下的稳定运行,而且通过精确控制散热风扇的工作,降低了能源消耗,达到了节能环保的目的。该方案具有良好的适用性和扩展性,可广泛应用于需要温度管理的各种电器和工业设备中,是现代工业自动化领域中一个值得关注和推广的优秀技术应用案例。
2025-01-16 09:15:41 167KB MCS_51 工业屏柜
1
高温或内部功耗产生的过多热量可能改变电子元件的特性并导致其关机、在指定工作范围外工作,甚或出现故障。电源管理器件(及其相关电路)经常会遇到这些问题,因为输入与负载之间的任何功耗都会导致器件发热,所以必须将热量从这些器件中驱散出来,使其进入PCB、附近的元器件或周围的空气。即使在传统高效的开关电源中,当设计PCB和选择外部元器件时,也都必须考虑散热问题。
2024-03-23 09:27:24 123KB 电源管理 MOSFET 课设毕设
1
本文讨论了一种使用通孔布置来最大化双相电源模块散热性能的多层PCB布局方法。
2023-07-06 19:53:50 70KB PCB设计 电源散热 热阻值 文章
1
对一笔记本电脑中的散热模组进行了实验研究,在给定CPU及北桥发热功率条件下,测量了CPU及北桥、热管和散热器出口空气的温度。同时,采用节点网络法对该散热模组进行了热计算,其中CPU至热管、北桥至热管的热阻由热阻测试仪测量得到参考值。在计算过程中对一些参数进行适当调整后,计算结果与实测结果基本一致。
2023-05-04 18:36:30 9.51MB 工程技术 论文
1
目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封 装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。   散热计算   任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。在某些大型设备的功
1
导读:LED照明系统的发展在很大程度上受到散热问题的影响,对于大功率LED而言,散热问题已经成为制约其发展的一个瓶颈问题。   以单片机AT89C51为控制核心,将半导体制冷技术引入到LED散热研究中,采用PID算法和PWM调制技术实现对半导体制冷片的输入电压的控制,进而实现了对半导体制冷功率的控制,通过实验验证了该方法的可行性。   随着LED技术日新月异的发展,LED已经走进普通照明的市场。然而,LED照明系统的发展在很大程度上受到散热问题的影响。对于大功率LED而言,散热问题已经成为制约其发展的一个瓶颈问题。而半导体制冷技术具有体积小、无须添加制冷剂、结构简单、无噪声和稳定可靠等优点
1