内容概要:本文深入探讨了在SMIC180和TSMC180两种不同工艺条件下,使用Cadence工具设计折叠式共源共栅放大器的方法和技术要点。首先介绍了设计背景及其面临的挑战,特别是宽摆幅和高压摆率(PSRR)的要求。接着详细解释了折叠式共源共栅放大器的工作原理,强调了其独特的结构特点对于提高放大倍数和降低噪声的重要意义。然后阐述了整个设计流程,包括建模、优化、仿真直至验证的具体步骤,并分享了一些实用技巧。最后提供了具体的应用案例,如通过调节晶体管参数达到预期效果的实际操作经验。 适合人群:从事模拟集成电路设计的专业人士,尤其是希望深入了解折叠式共源共栅放大器设计的技术人员。 使用场景及目标:适用于想要掌握最新工艺条件下的高效能放大器设计方法的研究者或者工程师;旨在帮助他们更好地理解和应用Cadence软件完成复杂电路的设计任务。 其他说明:文中还附有简化的Verilog代码片段作为参考,便于读者快速上手实践。同时,通过对以往项目经历的回顾,为读者提供了宝贵的实战经验和解决方案。
2025-05-14 01:46:09 741KB
1
给出了一种利用TSMC 0.18μm CMOS工艺实现的2.5Gb/s跨阻前置放大器。此跨阻放大器的增益为66.3dBΩ,3dB带宽为2.18GHz,等效输入电流噪声为112.54nA。在标准的1.8V电源电压下,功耗为7.74mW。输入光功率为-10dBm时,PCML单端输出信号电压摆幅为165mVp-p。模拟结果表明该电路可以工作在2.5Gb/s速率上。
2025-05-12 00:55:57 612KB 工程技术 论文
1
基于标准CMOS 0.18 μm工艺,设计了一种带AGC功能的光接收机RGC输入前置放大器。该放大器采用电压并联负反馈结构;输入级采用RGC结构以拓展带宽,从而解决了宽带宽与高跨阻之间的矛盾;输出级接入单端转差分结构,使输出的信号能直接输入到后续的主放大器中;嵌入自动增益控制技术AGC,以解决输入动态范围与高跨阻、低噪声之间的矛盾。同时,选用SIMC 0.18 μm工艺库进行了模拟仿真。结果显示,当光接收机输入光功率为-10 dBm、电源电压为1.8 V、光检测器的寄生电容为0.5 pF时,此放大器具有良好的等效电流输入曲线和幅频特性。 【一种带AGC功能的RGC输入前置放大器设计】是一种专为光接收机设计的集成电路,采用0.18微米的标准CMOS工艺。该放大器的核心目标是解决宽带宽与高跨阻以及输入动态范围与低噪声之间的矛盾。通过引入自动增益控制(AGC)技术,它能够动态调整增益,确保在不同输入光功率条件下保持稳定的性能。 在电路设计上,该放大器采用了电压并联负反馈结构,这种结构有助于提高稳定性和线性度。输入级采用了RGC(Regulated Cascode,受控共源极)结构,这种结构可以有效地扩展放大器的带宽,同时解决宽带宽和高跨阻的矛盾。RGC结构以其高输出阻抗和宽输出电压范围而著称,而且由于其高速度和低噪声的特性,特别适合用作前置放大器。 输出级则采用了单端转差分结构,这一设计使得放大后的信号可以直接馈送到后续的主放大器,简化了系统连接,降低了信号损失。嵌入的AGC技术能够根据输入信号的强弱自动调节增益,从而确保整个系统的动态范围。 在性能参数分析方面,RGC电路的输入电阻可以通过电路的小信号分析来计算。光电二极管作为光信号到电信号的转换器,其输出电流经过晶体管M1放大,形成电压信号。晶体管M2和电阻R3在输入级提供局部反馈,有助于改善输入阻抗。通过适当的电路配置,例如图2中的低通滤波器(R7和C1),可以实现单端到差分的转换,同时消除输出偏移。 在实际模拟仿真中,利用SIMC 0.18微米工艺库,该放大器在1.8伏电源电压下表现出良好的性能。当光检测器的寄生电容为0.5皮法时,低频跨阻增益达到72.8 dBΩ,3dB带宽为3.06 GHz,满足了高速率(10 Gb/s)的需求。同时,噪声电流低至108.36 nA,表明该放大器具有较低的噪声性能。 这种带AGC功能的RGC输入前置放大器设计,结合了RGC结构的优势和AGC技术,能够在有限的电源电压下实现高速、低噪声的光信号放大,对于提高光纤通信系统的性能和稳定性具有重要意义。这样的设计对于减少我国对进口通信芯片的依赖,推动国内通信行业的发展也起到了积极的作用。
2025-05-12 00:51:05 306KB IC设计软件
1
特性 • 单放大器: MCP6C02 • 双向或单向 • 输入(共模)电压: - +3.0V至+65V(指定电压) - +2.8V至+68V(工作电压) - -0.3V至+70V(生存电压) • 电源: - 2.0V至5.5V - 单电源或双(分离式)电源 • 高直流精度: - VOS: ±1.65 μV(典型值) - CMRR: 154 dB(典型值) - PSRR: 138 dB(典型值) - 增益误差: ±0.1%(典型值) • 预设增益: 20、 50和100 V/V • POR保护: - HV POR(VIP – VSS) - LV POR(VDD – VSS) • 带宽: 500 kHz(典型值) • 电源电流: - IDD: 490 μA(典型值) - IBP: 170 μA(典型值) • 增强型EMI保护: - EMIRR: 2.4 GHz时为118 dB(典型值) • 指定温度范围: - -40°C至+125°C(E-Temp器件) - -40°C至+150°C(H-Temp器件) 典型应用 • 汽车(见产品标识体系) - 通过AEC-Q100 0级认证(VDFN封装) - 通过AEC-Q100 1级认证(SOT-23封装) • 电机控制 • 模拟电压转换器 • 工业计算 • 电池监视器/测试仪 相关产品 • MCP6C04-020 • MCP6C04-050 • MCP6C04-100 概述 Microchip的MCP6C02上桥臂电流检测放大器提供20、 50和100 V/V三种预设增益。共模输入范围(VIP)为 +3V 至+65V。差模输入范围(VDM = VIP – VIM)支持 单向和双向应用。 电源可设置在2.0V和5.5V之间。采用SOT-23封装的器 件的指定温度范围为-40°C至+125°C(E-Temp),而 采用3×3 VDFN封装的器件的指定温度范围为-40°C至 +150°C(H-Temp)。 零漂移架构支持极低的输入误差,允许设计使用阻值较 小(和功耗较低)的电流检测电阻。 MCP6C02是Microchip Technology公司推出的一款高性能电流检测放大器,特别适用于汽车、电机控制、模拟电压转换器和工业计算等领域的应用。这款放大器具备多种特性,使其在高精度电流检测中表现出色。 MCP6C02支持双向或单向输入,其共模输入电压范围广泛,从+3.0V到+65V(指定电压),工作电压可达+2.8V至+68V,甚至在生存电压下也能承受-0.3V至+70V。这意味着它能够处理较大的电压波动,适应各种工作环境。 该器件具有出色的直流精度,其偏置电压(VOS)仅为±1.65 μV的典型值,共模抑制比(CMRR)高达154 dB,电源抑制比(PSRR)达到138 dB,增益误差不超过±0.1%。这些参数确保了在不同电源条件下,放大器的输出能够保持高度准确,对电源波动不敏感。 MCP6C02提供预设的增益选项,包括20、50和100 V/V,这使得用户可以根据具体应用需求选择合适的增益设置,简化设计过程。此外,它还配备了POR(电源复位)保护功能,包括HV POR(VIP – VSS)和LV POR(VDD – VSS),以防止电源异常时造成的损害。 在带宽方面,MCP6C02的典型值为500 kHz,适合处理中高速信号。它的电源电流IDDD和IBPP分别为490 μA和170 μA,表明其功耗相对较低,适合节能设计。增强型EMI保护(EMIRR)在2.4 GHz时达到118 dB,能有效降低电磁干扰,提高系统稳定性。 MCP6C02有两种封装形式,SOT-23封装的器件工作温度范围为-40°C至+125°C(E-Temp),而3x3 VDFN封装的器件则能在更极端的-40°C至+150°C(H-Temp)条件下正常工作。其中,VDFN封装的器件通过了AEC-Q100 0级和1级认证,适合汽车应用。 总结来说,MCP6C02是一款高精度、低功耗、宽输入电压范围的电流检测放大器,适用于需要高稳定性和精确电流测量的工业和汽车电子系统。它提供的多种增益设置、出色的噪声抑制能力和温度适应性,使得它成为电机控制、电池监测和模拟信号处理等领域理想的选择。
1
ADS学习笔记 2. 低噪声放大器设计-DataSheet:ATF54143(LNA) 一、引言 Agilent ATF-54143是一款高动态范围、低噪声、E-PHEMT器件,封装在小型塑料表面贴装SC-70(SOT-343)4引脚中。由于其高增益、高线性度和低噪声特性,它特别适合于450 MHz到6 GHz频率范围内的蜂窝/PCS基站、MMDS以及其他系统的低噪声放大器设计。 二、产品特性 1. 高线性度性能:该器件在保持高增益的同时,还能提供出色的线性度。 2. 增强型模式技术[1]:此技术要求正的栅源电压(Vgs),因此可以避免与传统耗尽模式设备相关的负栅压。 3. 低噪声系数:在典型的2 GHz工作频率下,噪声系数为0.5 dB,非常适合低噪声应用。 4. 优秀的规格一致性:确保不同产品之间的性能稳定。 5. 800微米栅宽:较大的栅宽有助于增加增益和功率容量。 6. 低成本表面贴装小型塑料封装SOT-343(4引脚SC-70):易于与现代制造流程兼容。 7. 可选的贴带和卷带包装:适合自动化表面贴装生产线。 三、性能参数 1. 工作频率:在2 GHz下典型工作,但适用范围更广。 2. 工作电压:3V,工作电流为60 mA(典型值)。 3. 输出三阶交调点:典型值为36.2 dBm。 4. 1 dB增益压缩点输出功率:20.4 dBm。 5. 噪声系数:0.5 dB。 6. 相关增益:16.6 dB。 四、应用场景 ATF-54143的应用领域包括: 1. 蜂窝/PCS基站的低噪声放大器。 2. WLAN、WLL/RLL和MMDS应用的低噪声放大器(LNA)。 3. 其他超低噪声应用的通用离散E-PHEMT。 五、封装和标记 ATF-54143采用SOT-343封装。引脚连接和封装标记如下图所示: ``` SOURCEDRAIN GATE SOURCE4Fx ``` 【顶部视图】。封装标记提供了器件的方向和标识,其中“4F”表示设备代码,“x”表示制造月份的日期代码字符。 六、绝对最大额定值 为避免永久性损坏,操作器件时不得超过下述任何一项参数: 1. 漏极-源极电压(VDS):5V。 2. 栅极-源极电压(VGS):-5 到 1V。 3. 栅漏电压(VGD):5V。 4. 漏极电流(IDS):120 mA。 5. 总功率耗散(Pdiss):360 mW(在源极引线温度为25°C时)。 6. RF输入功率:最大10 dBm。 7. 栅源电流(IGS):2 mA。 8. 通道温度(TC):150°C。 9. 存储温度(TSTG):-65 到 150°C。 10. 热阻(θjc):162°C/W。 请注意,上述参数是在直流静态条件下假设的,且源极引线温度为25°C。当源极引线温度超过25°C时,需要进行降额处理。 七、注意事项 1. 超过这些参数的任何操作都可能导致永久性损坏。 2. 最大RF输入功率测试基于无调制的连续波输入信号。 3. 如果超出规格范围,可能不会损坏器件,但规格无法保证。 以上内容均基于DataSheet ATF54143的数据信息,详细情况请参照原厂手册或相关数据资料。
2025-05-06 16:02:28 160KB DataSheet
1
"简易差分放大器性能测试装置(B题)" 本资源摘要信息对于简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍。该装置主要用于测试差分放大器的性能,包括差模电压放大倍数和共模电压放大倍数的测量、幅频特性测量和差模传输特性测量等。 一、任务 设计并制作一台自动测量场效应晶体管差分放大器性能的简易测试装置。被测差分放大器电路如图 1 所示,自行搭建。 图 1 差分放大器电路 二、要求 1. 基本要求 (1)按图 1 中参数搭建差分放大器电路,并调试使之正常工作。其中晶体管采用 N 沟道小功率场效应晶体管,型号任选不限。(10 分) (2)该装置自行产生测试信号 ui 加在放大器输入端,能够采集放大器输出端的信号 uo,并能够显示信号波形。测试时应用示波器同时监测 4 个输入输出端点 ui+、ui-、uo+、uo-的信号。要求: * 输入差模 uid 类型:DC:0~500mV,10mV 步进;AC:幅度(有效值):0~200mV,10mV 步进,频率:100Hz~300kHz,100Hz 步进。uid 类型、幅度大小和频率可用键盘设置。 * 输入共模 uic 类型:AC:幅度(有效值):2V,频率:1kHz。(20 分) (3)差模放大倍数测量。在 1kHz 频率下测量放大器的差模电压放大倍数 Aud 并记录显示。Aud=Uod/Uid(10 分) (4)共模放大倍数测量。在 1kHz 频率下测量放大器的共模电压放大倍数 Auc 并记录显示。Auc=Uoc/Uic Uic= Ui+ = Ui- =2V 测试共模放大倍数时允许手动改变连接切换输入信号。(10 分) 二、发挥部分 (1)幅频特性测量。连续改变输入信号频率,实时测量并显示放大器电压放大倍数的幅频特性曲线 Aud(f)。给出上限截止频率值并显示记录。(24 分) (2)差模传输特性测量。uid =0~500mV 以 DC 逐点扫描方式测量并显示放大器的差模传输特性(uod 随 uid 变化的关系)曲线。(21 分) (3)其他。(5 分) 三、说明 1. 作品可采用现场提供的直流稳压电源供电。 2. 基本要求(1)调测时可用信号发生器和示波器测量。 3. 测量精度要求:相对误差的绝对值不超过 10% 。 本资源摘要信息对简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍,涵盖了差分放大器的基本原理、设计要求和测试方法等方面的知识点。
2025-05-06 12:06:23 139KB 性能测试
1
电子技术实验,可编程放大器,整个文档,步骤全面,条理清晰
2025-04-29 14:29:27 1.16MB 电子技术实验
1
《基于ADS的功率放大器详解》是一份详细阐述如何利用ADS软件进行功率放大器设计的文档,由RF工程师高龙撰写。文档的核心是利用MW6S9060N芯片进行大功率放大器的设计和仿真,旨在提供一个学习和理解功率放大器设计流程的平台,而非实际的产品开发指南。 在设计过程中,文档提到了一些关键概念和计算方法: 1. **直流偏置电路**(DC Bias Circuit):这是射频放大器的基础部分,负责为晶体管提供稳定的工作条件,确保其在适当的偏置点工作,以实现理想的放大性能。 2. **最大可用功率**(Maximum Available Power):当负载阻抗等于源阻抗时,即Zin = Zo = 50欧姆,可以实现最大功率传输。 3. **反射系数**(Reflection Factor, Γ):表示信号在传输线上的反射程度,Γ = (Vr - Vi) / (Vr + Vi),其中Vr和Vi分别为反射电压和入射电压。 4. **电压驻波比(VSWR)**:VSWR = (Vmax / Vmin)的比值,是衡量负载匹配好坏的指标,VSWR越接近1,匹配越好。 5. **回波损耗(Return Loss, RL)**:回波损耗是信号从负载反射回来的能量与输入能量的比值的对数,RL = 20 * log(1 / Γ)(dB)。 6. **输入和输出匹配网络**:它们的作用是将源和负载的阻抗调整到晶体管的理想工作状态,减少信号反射,提高效率。 7. **失配损失(Mismatch Loss)**:当负载或源与理想阻抗不匹配时,会引入功率损失,失配因子MM = |Γ|,失配损失ML = log(10) * (1 - MM^2) / 2。 8. **增益(Gain, G)**:增益是放大器输出功率与输入功率的对数比,dB增益G_dB = 10 * log(G_in / G_out)。 9. **噪声系数(Noise Figure, NF)**:衡量放大器引入的额外噪声,NF = log[(Pout_noisy / Pout_noiseless) / (Pin_noisy / Pin_noiseless)],其中Pout和Pin分别表示有噪声和无噪声情况下的输出和输入功率。 10. **1dB压缩点功率(Power Out at 1dB Compression Point)**:当输入功率增加导致输出功率仅提升1dB时的功率值,表示放大器的线性度。 11. **效率(Efficiency)**: - **集电极效率(Collector Efficiency, ηC)**:ηC = DC_power_out / DC_power_in,是晶体管转换为射频功率的比例。 - **功率增益效率(Power Added Efficiency, PAE)**:PAE = (DC_power_in - DC_power_out) / DC_power_in,考虑了由输入直流功率转换成的有用射频功率。 - **总效率(Total Efficiency, ηT)**:ηT = TP / DC_power_in,TP是总的输出功率(包含射频和直流损耗)。 12. **失真(Distortion)**:包括谐波失真、AM到PM转换以及互调失真,这些是衡量放大器线性度的重要指标,如OIP3(输出第三阶互调截点),是衡量非线性性能的关键参数。 在实际调试中,设计者需要根据需求调整偏置电压来优化IP3,以及采用功率回退或预失真技术来改善线性度。文档虽然没有详述这些细节,但强调了在实际操作中整体电路调整的重要性。 文档作者表达了对射频设计高手指导的期待,并提供了联系方式以便交流讨论。这份文档对于想要学习ADS软件和功率放大器设计的人来说,无疑是一份宝贵的参考资料。
2025-04-27 16:18:46 906KB 文档资料
1
【低噪声放大器基础知识】 低噪声放大器(Low Noise Amplifier,LNA)在无线通信系统中扮演着至关重要的角色,特别是在接收模块中。它的主要功能是将接收到的微弱信号放大,同时尽可能地保持信号质量,降低噪声。噪声在通信系统中是一种干扰,会影响信号的清晰度和传输效率,因此LNA的噪声系数(Noise Figure, NF)是一个关键性能指标。噪声系数定义为输入端噪声功率与输出端噪声功率之比,数值越小,表明LNA对信号的噪声污染越小。 【UHF频段低噪声放大器】 UHF(Ultra High Frequency)频段通常指300MHz到3GHz之间的频率范围,这个频段广泛应用于广播、电视、移动通信等多个领域。设计UHF频段的低噪声放大器时,需要考虑以下因素: 1. **宽带设计**:由于UHF频段宽,所以LNA需要有良好的频率响应,能在整个频段内保持稳定的增益和低噪声性能。 2. **匹配网络**:为了确保输入和输出信号的有效传输,匹配网络设计至关重要。它需要使LNA的输入阻抗与后续电路的输出阻抗相匹配,同时降低反射,以减少信号损失。 3. **晶体管选择**:选择合适的晶体管对于实现低噪声和高增益至关重要。在本设计中,选择了安捷伦公司(Agilent)的低噪声高电子迁移率晶体管(High Electron Mobility Transistor, HEMT)ATF-54143,这类晶体管具有低噪声特性,适合高频应用。 4. **负反馈技术**:负反馈可以改善放大器的稳定性,减小输入反射,并有助于平衡噪声系数与输入匹配的关系。在本课题中,采用负反馈设计,使得LNA能在提升增益的同时控制噪声。 【仿真与优化】 在设计过程中,利用Advanced Design System (ADS)这款射频电路仿真软件进行电路设计和优化。ADS可以帮助设计者进行输入、输出匹配电路、偏置电路的设计,并模拟其性能。通过优化电路参数,可以进一步降低噪声系数、提升增益,并确保系统的稳定性。 【实物制作与测试】 设计完成后,使用Protel DXP软件绘制PCB(Printed Circuit Board)版图,进行实物制作。实物制作完成后,需要进行测试和调试,以验证设计的性能。在本案例中,测试结果显示低噪声放大器的功率增益达到23dB,噪声系数约为0.6dB,这表明设计达到了预期的目标。 毕设中的低噪声放大器设计涉及了无线通信的基础理论、噪声测量技术、匹配网络设计、晶体管选择、负反馈应用以及电路优化等多个方面,是一个综合性较强的技术实践项目。这样的设计不仅锻炼了学生的理论知识应用能力,也提升了他们在实际电路设计和调试上的技能。
2025-04-21 00:20:31 725KB 无线通信
1
LNA总电路
2025-04-20 09:59:17 1.21MB
1