基于大蔗鼠优化策略:改进的大蔗鼠优化算法IGCRA与自然觅食行为结合的元启发式算法研究,改进的IGCRA:三大策略驱动的大蔗鼠优化算法(Greater Cane Rat Algorithm with Enhanced Strategies)在CEC2005测试中的表现及展望,改进的大蔗鼠优化算法(IGCRA),三个改进策略。 快人一步发paper 2024新算法——蔗鼠优化算法Greater Cane Rat Algorithm,GCRA,蔗鼠算法(GCRA)是受蔗鼠觅食和交配行为启发而提出的一种新的元启发式算法,该成果于2024年5月23日在线发表。 GCRA优化过程的灵感来自于大蔗鼠交配季节和非交配季节的智能觅食行为。 它们是高度夜行性的动物,当它们在芦苇和草丛中觅食时,它们会留下痕迹。 这些小路随后会通向食物、水源和住所。 探索阶段是当它们离开分散在它们领地周围的不同避难所去觅食和留下踪迹时。 据推测,雄性首领保留了这些路线的知识,因此,其他老鼠根据这些信息修改它们的位置。 在cec2005测试函数进行测试,有最优值,最差值,标准差和平均值和四个指标。 由于代码本身原因F14-F
2025-10-14 10:36:41 1.06MB gulp
1
在恶劣天气(如雾、霾)条件下,室外计算机视觉系统会采集到严重降质的图像,为生产、生活带来了严重的影响。本文基于色彩恒常理论提出了一种快速有效的雾天图像增强新算法,首先利用拉普拉斯梯度算子增强了雾天降质图像的各个颜色分量的边缘信息,然后在单尺度Retinex算法的基础上创新性提出了一种符合人眼视觉特性的中心自适应调节的拟合函数增强图像各个颜色分量,提高对比度,保持色彩信息。同时结合对比度、信息熵和运算时间等客观评价标准,与直方图均衡化和多尺度Retinex算法进行对比,验证了本算法优越性,并能满足实时处理的
2025-10-06 19:43:17 1.07MB 工程技术 论文
1
内容概要:本文介绍了一种改进的QSGS四参数随机生长法,用于重构三维多孔介质结构。该方法在原有基础上优化了孔隙生成逻辑,支持手动调控孔隙形状、孔隙率和孔径大小,并引入26联通算法去除孤立孔隙,实现xyz方向连通性提取。生成模型可三维可视化、切片展示,并导出为.raw、Tecplot、txt等格式,兼容Avizo、COMSOL、Fluent及LBM模拟。代码基于Matlab实现,同时提供导入C++、Python及CT图像的接口,支持大尺寸体素建模。 适合人群:从事多孔介质建模、岩石物理、渗流模拟等相关领域的科研人员与工程师,具备Matlab编程基础者更佳。 使用场景及目标:①用于生成具有各向异性的三维多孔介质模型;②支持孔隙结构参数调控与连通性分析;③为数值模拟(如LBM、有限元)提供几何输入;④辅助CT图像处理与真实岩心结构重建。 阅读建议:建议结合Avizo等软件验证生成结果的孔隙率与连通性,关注代码中参数调节逻辑,理解生长机制以提升模型适用性。购买后可获得教学支持与持续更新服务。
2025-10-06 14:22:31 3.61MB
1
蚊子检测系统是基于计算机视觉和机器学习技术发展起来的应用,其主要目的是为了快速准确地识别和定位蚊子的位置,对于控制蚊虫传播的疾病有着重要的意义。本系统采用了改进后的YOLOV8模型进行训练,YOLOV8模型是YOLO(You Only Look Once)系列的最新版本,它是一类流行的目标检测算法,以其高效率和准确率在实时对象检测领域受到广泛关注。 该系统的源码分享中包含了9900张蚊子图像数据集,这些数据集是模型训练的基础。在训练过程中,使用了大规模的图像数据,这对于提高模型的泛化能力和检测精度至关重要。数据集的收集和标注是一个繁琐但必不可少的步骤,它需要大量的人力和时间投入。数据集的质量直接影响到最终模型的表现,因此在数据准备阶段需要进行细致的图像预处理和标注工作,以确保每个图像中的蚊子都能被清晰地识别和定位。 源码分享中还包含了YOLOV8模型的优化训练代码。模型优化是提升检测性能的关键步骤,它涉及到网络结构的调整、损失函数的设计、超参数的优化等众多方面。为了获得最佳的检测效果,开发人员会对模型进行细致的微调,确保模型能在不同的环境和条件下稳定运行。代码中可能会包含各种实验性的尝试,例如改变卷积层的数量、使用不同的激活函数或者调整学习率等。 在功能上,本蚊子检测系统不仅支持目标检测,还支持实例分割模型。目标检测可以识别图像中蚊子的位置并给出边界框,而实例分割则更进一步,能够精确地描绘出蚊子的轮廓,这对于蚊子的准确识别和分类具有更高的实用价值。 系统还适配了图片识别、视频识别以及摄像头实时识别功能。这意味着该系统不仅能够处理静态图片中的蚊子检测任务,还能够对视频流进行连续的分析,实时地从摄像头捕捉的视频中检测出蚊子。这种实时监测的能力对于公共卫生安全监控尤为重要,尤其是在户外或公共区域的蚊子密度监测中。 该系统提供了一个名为W的压缩文件,方便用户下载使用。这个压缩文件可能包含了上述提及的所有内容,包括数据集、训练代码和模型文件等,使得用户能够轻松获得整个系统,并进行进一步的研究和开发。 基于改进YOLOV8的蚊子检测系统代表了目标检测技术在实际应用中的一个新进展。它通过集成大量的图像数据和先进的模型优化,为科研人员和公共卫生工作者提供了一个强有力的工具,有助于改善蚊子控制的策略,提升监测效率和准确性,进而为人类健康安全提供保障。
2025-09-29 15:50:32 2.26MB
1
内容概要:本文详细探讨了利用改进粒子群算法(PSO)进行微电网综合能源优化调度的方法。首先介绍了微电网的概念及其优化调度的重要性,然后建立了包含可再生能源、储能系统和常规能源在内的优化模型,优化目标涵盖经济性和环保性。接着,针对传统PSO算法存在的局限性,提出了引入自适应惯性权重、动态调整加速因子以及混合变异操作的改进措施。文中还提供了Python代码实现,展示了改进算法的具体步骤,并通过实验验证了其优越性。结果显示,改进后的PSO算法在收敛速度和解质量方面均有显著提升。 适合人群:从事微电网研究、智能优化算法开发的研究人员和技术人员,尤其是对粒子群算法有一定了解并希望应用于实际工程问题的人士。 使用场景及目标:适用于需要对微电网进行高效、经济且环保的能源调度的场合,旨在通过改进的粒子群算法实现快速收敛和高质量的优化解,从而降低成本并减少环境污染。 其他说明:本文不仅提供了理论分析,还包括详细的代码实现,有助于读者更好地理解和应用所提出的改进算法。此外,文中提到的改进策略对于其他类似优化问题也具有一定的借鉴意义。
2025-09-27 15:42:00 4.99MB
1
现有的很多调度算法存在时间复杂度过高或调度成功率低的问题。提出一种新的调度算法(HRTSA),提高实时任务的调度成功率。HRTSA首先通过METC策略初始化分簇,降低算法的时间复杂度;再在放置任务时根据处理器的负载均衡进行处理器负载的有效控制;最后通过任务复制调度以提高任务调度成功率。对比实验分析表明提出的HRTSA算法时间复杂度与RTSDA相比较低,调度成功率较高。
2025-09-27 10:39:08 1.78MB 异构多处理器 实时任务 调度
1
内容概要:本文介绍了使用COMSOL Multiphysics 6.3对单重和双重渗透介质下降雨边界的改进模型进行数值模拟的研究。传统降雨边界存在只能从流量边界转为压力边界的问题,无法有效模拟退水过程。文中提出了一种新的边界条件切换机制,利用流量差Δq作为补充判断条件,实现了流量边界和压力边界的智能切换。对于双重介质模型,还引入了耦合偏微分方程来处理基质流和裂隙流之间的水分交换。通过实例验证,新方法不仅提高了计算精度,还显著提升了计算效率。 适合人群:从事岩土工程、环境科学及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要精确模拟降雨入渗过程的科研项目,特别是涉及复杂地质条件下的渗流分析。目标是提高模拟的准确性并减少计算时间。 其他说明:建议初学者从单重介质模型开始练习,在掌握基本概念后再尝试复杂的双重介质模型。注意调整网格密度以优化计算性能。
2025-09-22 01:15:38 765KB
1
基于改进A星与APF算法的智能路径规划MATLAB代码实现,基于改进A星与APF算法的智能路径规划MATLAB代码实现,基于改进A星与改进人工势场APF的路径规划算法。 A星算法生成全局参考路径,APF实时避开动态障碍物和静态障碍物并到达目标 改进A星: 1.采用5*5邻域搜索 2.动态加权 3.冗余点删除 改进APF:通过只改进斥力函数来解决局部最小和目标不可达 的matlab代码,代码简洁,可扩展性强,可提供。 ,核心关键词:A星算法; 改进A星; APF; 路径规划; 动态加权; 邻域搜索; 冗余点删除; 斥力函数; MATLAB代码; 代码简洁; 可扩展性强。,基于改进A星与APF的智能路径规划算法MATLAB代码
2025-09-18 11:46:08 258KB 数据结构
1
内容概要:本文详细介绍了如何结合改进的A星算法和优化的人工势场法(APF)来实现高效的路径规划。改进的A星算法通过扩大邻域搜索范围、引入动态加权机制以及去除冗余点,提高了路径的优化程度和效率。优化的APF算法解决了传统方法中存在的局部最小值和目标不可达问题,通过改进斥力函数,使其能够更好地应对动态环境中的障碍物。两者结合形成的路径规划系统不仅能够在全局范围内找到最优路径,还能在实时避障方面表现出色。 适合人群:对路径规划算法有一定了解并希望通过MATLAB实现高效路径规划的研究人员和工程师。 使用场景及目标:适用于需要在复杂和动态环境中进行路径规划的应用,如自动驾驶车辆、机器人导航、仓库自动化设备等。目标是在确保路径最优的同时,提供强大的实时避障能力。 其他说明:文中提供了详细的MATLAB代码实现,包括各个子模块的功能介绍和具体实现方式。此外,还讨论了一些实用的技术细节和优化技巧,如动态加权机制的具体应用、冗余点删除的方法等。
2025-09-18 11:41:57 229KB
1
ICPO:冠豪猪优化算法的全新改进版,强化防御阶段与加速收敛的新方法,ICPO:冠豪猪优化算法的全面改进与加速收敛新方法,一种改进的冠豪猪优化算法(ICPO)|An Improved Crested Porcupine Optimizer 2、改进点 1. 去掉了种群缩减 2. 改进了第一防御阶段 3. 改进了第二防御阶段 4. 改进了第四防御阶段 使用一种全新的方法加速算法收敛 ,ICPO; 优化算法; 改进点; 去除种群缩减; 改进防御阶段; 加速算法收敛。,ICPO: 新增方法加速收敛的冠豪猪优化算法优化改进
2025-09-16 20:53:32 697KB 正则表达式
1