针对鲸鱼优化算法存在探索和开发能力难以协调、易陷入局部最优的不足,提出一种基于混沌搜索策略的鲸鱼优化算法(CWOA).首先,采用混沌反向学习策略产生初始种群,为全局搜索多样性奠定基础;其次,设计收敛因子和惯性权重的非线性混沌扰动协同更新策略以平衡全局探索和局部开发能力;最后,将种群进化更新与最优个体的混沌搜索机制相结合,以减小算法陷入局部最优的概率.对10个基准测试函数和6个复合测试函数进行优化,实验结果表明,CWOA在收敛速度、收敛精度、鲁棒性方面均较对比算法有较大提升.
1
针对灰狼算法具有易陷于局部最优并且收敛速度不理想的缺点,提出基于改进收敛因子策略和引入动态权重策略以及两种策略混合改进的灰狼优化算法,并且用于求解函数优化问题。提出一种非线性收敛因子公式,能够动态地调整算法的全局搜索能力,引入的动态权重使算法在收敛过程中能够加快算法的收敛速度。通过15个基准测试函数验证改进后算法的全局搜索能力、局部搜索能力与收敛速度,实验结果表明,改进后的算法无论在搜索能力还是收敛速度上都强于标准灰狼算法。
2021-11-09 23:09:08 1.69MB 灰狼算法 收敛因子 动态权重 收敛速度
1