svm支持向量机python代码 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf
2024-05-29 17:17:50 189KB 支持向量机 python
1
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。   目前,构造SVM多类分类器的方法主要有两类   (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中;   (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种。
2024-03-06 22:44:41 2KB 支持向量机 svm多分类
1
针对顶板冒落带高度问题提出新的预计模型,通过搜集众多矿井的实测数据,在支持向量机理论基础上建立预计模型。采用果蝇优化算法对预计模型进行优化训练,建立FOA-SVM预计模型,利用实测数据对模型的预计结果进行检验,预计结果较为准确,比PSO-SVM模型和GA-SVM模型结果稳定性好计算精度高。
1
基于支持向量机SVM的数据分类预测,SVM分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-21 14:34:09 738KB 支持向量机
1
1. 对应视频链接:https://www.bilibili.com/video/BV1PB4y167et/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的数据回归预测(完整源码和数据) 3. 多变量输入,单变量输出,数据回归预测 4. 评价指标包括:R2、MAE、MSE、RMSE 5. 包括拟合效果图和散点图 6. Excel数据,暂无版本限制,推荐2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-08-31 08:33:38 59KB matlab 支持向量机 回归 机器学习
1
1. 对应视频链接:https://www.bilibili.com/video/BV1xa411K7aF/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的数据分类预测(完整源码和数据) 3. 多变量输入,单变量输出(类别),数据分类预测 4. 评价指标包括:准确率 和 混淆矩阵 5. 包括拟合效果图 和 混淆矩阵 6. Excel数据,要求 Matlab 2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-07-19 20:56:35 118KB matlab 支持向量机 机器学习 深度学习
1
1. 对应视频链接:https://www.bilibili.com/video/BV1gG4y1r7dd/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的时间序列预测(完整源码和数据) 3. 单列数据,递归预测-自回归,时间序列预测 4. 评价指标包括:R2、MAE、MSE、RMSE 5. 包括拟合效果图和散点图 6. Excel数据,暂无版本限制,推荐2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-07-07 20:29:08 70KB matlab 支持向量机 机器学习 时间序列
1
这是关于支持向量机的几篇外文资料~~支持向量机 方法是确pnik等人根据统计学习 理论提出的一种新型的、有效的机器学习方法,它以结构风险最小化准则和VC维理 论为理论基础,通过适当地选择函数子集以及该子集中的判别函数,使学习机器的 实际风险达到最小,保证了通过有限训练样本得到小误差分类器。
2023-05-04 18:29:12 52KB 支持向量机 SVM 统计学
1
可以运行的代码!蜣螂优化算法(DBO)优化支持向量机(SVM),能够很好的进行分类或者预测,并且该算法是今年提出的,非常好用,值得推荐和写论文
2023-03-15 16:18:38 13KB 蜣螂优化算法 支持向量机 DBO SVM
1
提出了基于HHT变换和SVM结合的齿轮箱故障诊断方法,介绍了固有模态函数、EMD分解和Hilbert谱以及支持向量机(SVM)理论。先对各种工况信号消噪,再利用EMD分解将信号分解为IMF分量,求出Hilbert谱和边际谱,再利用边际谱求出各信号的故障特征信息,最后利用支持向量机判别齿轮箱的故障类型。该实验证明了此方法诊断齿轮箱故障的有效性。
1