目录 C110801【初试】2025年 北方自动控制技术研究所081103系统工程《801自动控制原理》考研精品资 料..........................................................................................................................................................................................................2 C110802【初试】2025年 北方自动控制技术研究所081103系统工程《802微型计算机系统原理及应用》 考研精品资料..............................................................................................................................................................................
2025-11-14 09:58:35 194KB
1
内容概要:本文深入探讨了四旋翼无人机的PID控制系统,涵盖仿真实验、动力学建模、级联PID控制器设计及内外环控制策略。首先介绍了四旋翼无人机仿真的重要性,包括三维模型、环境模型、传感器模型和控制算法模型的构建,为后续控制算法的验证提供了平台。接着阐述了动力学模型的作用,即通过力方程组和力矩方程组来描述无人机的运动规律,这是控制系统设计的基础。然后详细讲解了级联PID控制器的工作原理,分为内环姿态环和外环位置环两部分,前者用于维持无人机的姿态稳定,后者用于控制无人机的位置和速度。最后提供了详细的配套文档,帮助使用者理解和维护整个系统。 适合人群:从事无人机技术研发的研究人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解四旋翼无人机PID控制机制的人群,旨在提升无人机的稳定性和响应速度,优化其在复杂环境下的表现。 其他说明:本文不仅提供了理论知识,还附带了实用的仿真文件和详细的文档资料,便于读者进行实践操作和进一步探索。
2025-10-30 17:16:29 538KB
1
内容概要:本文深入探讨了四旋翼无人机的PID控制系统,涵盖了仿真的建立、动力学模型的构建、级联PID控制器的设计及内外环控制策略。首先,通过仿真模型测试控制算法并评估性能,为实际应用提供预调试平台。其次,动力学模型包括力方程组和力矩方程组,用于描述四旋翼无人机的运动规律。接着,级联PID控制器由内环姿态环和外环位置环组成,分别负责姿态稳定和位置控制。最后,提供了详细的配套文档,涵盖仿真、动力学模型、控制器设计及使用维护等方面的内容。 适合人群:从事无人机技术研发的研究人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解四旋翼无人机PID控制系统的专业人士,旨在提升无人机的稳定性和响应速度,优化控制效果。 其他说明:本文不仅提供了理论解析,还附带了实用的仿真文件和配套文档,便于读者理解和实践。
2025-10-30 17:15:05 329KB
1
内容概要:本文深入探讨了伺服系统中的模型追踪控制技术,特别是针对永磁同步电机(PMSM)的末端低频振动抑制。文章从理论推导出发,详细解释了模型追踪控制的工作原理,包括如何通过反馈和前馈控制策略实现对目标模型的跟踪。接着,文章介绍了基于离散化模型的仿真实践,展示了如何通过改变控制参数来优化系统响应。此外,还提供了详细的源代码和必要的函数库,帮助读者理解和实施这一技术。最后,讨论了1.5延时补偿技术的应用及其对系统稳定性和精度的提升。 适合人群:从事伺服控制系统设计的研究人员和技术人员,尤其是对永磁同步电机(PMSM)感兴趣的工程师。 使用场景及目标:适用于希望深入了解伺服系统模型追踪控制技术并应用于实际项目的人群。目标是掌握如何通过模型追踪控制技术有效抑制伺服系统的末端低频振动,提高系统的稳定性和精度。 其他说明:文章不仅提供了理论基础,还包括了具体的实现步骤和源代码,便于读者进行实践和验证。
2025-10-29 22:01:12 929KB
1
内容概要:本文深入探讨了伺服系统中的模型追踪控制技术,特别是针对永磁同步电机(PMSM)的末端低频振动抑制。文章从理论推导出发,逐步介绍如何构建精确的数学模型,并通过反馈和前馈控制策略实现对目标模型的有效跟踪。文中还详细描述了基于离散化模型的仿真实验,展示了如何通过调整控制参数优化系统性能。此外,作者提供了完整的源代码及其详细的注释,帮助读者理解和实践。最后,文章讨论了1.5延时补偿技术的应用,解决了实际应用中的延时问题,提高了系统的稳定性和精度。 适合人群:从事自动化控制、机电一体化领域的工程师和技术人员,尤其是对伺服系统有研究兴趣的专业人士。 使用场景及目标:适用于希望深入了解伺服系统模型追踪控制技术的研究人员和工程师,旨在解决实际工程中遇到的末端低频振动问题,提升系统的稳定性和精度。 其他说明:文章不仅提供了理论支持,还有丰富的实践指导,包括仿真设计和源代码分享,有助于读者快速上手并应用于实际项目中。
2025-10-29 22:00:50 570KB
1
基于三菱PLC与组态王鸡舍环境监测系统的温湿度控制技术养鸡场应用研究,基于三菱PLC与组态王技术的鸡舍温湿度智能控制系统,基于三菱PLC和组态王鸡舍温湿度控制养鸡场 ,基于三菱PLC; 温湿度控制; 养鸡场; 组态王鸡舍控制; 鸡舍环境调节,基于三菱PLC与组态王鸡舍温湿度智能控制养鸡场方案 随着现代化养殖业的发展,智能控制技术在鸡舍环境监测及管理中发挥着越来越重要的作用。本文将深入探讨基于三菱PLC与组态王技术在鸡舍温湿度控制中的应用研究。三菱PLC(可编程逻辑控制器)以其高稳定性、强大的控制能力、丰富的指令集等特性在工业控制领域广泛运用。组态王作为一种监控软件,与PLC结合后可以更直观地实现对设备的监控与管理。 在鸡舍环境监测系统中,温度和湿度是两个至关重要的参数,它们直接影响到鸡的生长健康和生产效率。因此,构建一个精准有效的温湿度智能控制系统对于现代化养鸡场是十分必要的。通过对温湿度数据的实时监测与分析,该系统可以自动调节鸡舍内的温度和湿度,以满足鸡只的最佳生长环境。此系统还可以通过预警机制在温湿度偏离正常范围时及时通知管理人员,确保鸡舍环境始终处于理想状态。 智能控制系统的设计和实现涉及多个环节。需要选用合适的传感器来监测鸡舍内的温湿度。这些传感器需要具备足够的灵敏度和精确度,以确保能够及时反映环境的变化。然后,传感器采集到的数据将被传递给PLC。PLC根据预设的控制逻辑进行运算处理,并输出相应的控制信号。控制信号通过驱动电路作用于加热、制冷、加湿或除湿设备,实现对鸡舍温湿度的精确调节。 在软件方面,组态王软件提供了一个图形化的用户界面,使得管理人员可以通过操作界面直观地看到鸡舍内的实时数据,并进行远程控制。同时,组态王还支持数据记录和历史数据分析,帮助管理人员分析鸡舍环境的历史变化,优化控制策略。 在实际应用中,鸡舍温湿度智能控制系统具有如下优点:一是提高了鸡舍环境管理的自动化水平,减轻了人工管理的工作量;二是通过精确控制环境参数,提高了鸡只的生长效率和成活率;三是系统的预警机制减少了因环境问题导致的鸡只疾病风险,降低了经济损失。 为了确保智能控制系统的可靠性,系统设计时需考虑到冗余和备份机制,以便在部分设备发生故障时系统仍能正常运行。此外,系统的安装和调试必须由专业人员完成,确保系统稳定运行和长期可靠性。 基于三菱PLC与组态王技术的鸡舍温湿度智能控制系统,不仅可以有效地提高养鸡场的自动化管理水平,还能为鸡只提供一个稳定舒适的生长环境,对提升养鸡场的整体经济效益具有重要意义。
2025-10-26 22:58:28 3.4MB xbox
1
自动驾驶控制技术:基于车辆运动学模型MPC跟踪仿真的研究与实践——Matlab与Simulink联合仿真应用解析,自动驾驶控制-基于车辆运动学模型MPC跟踪仿真 matlab和simulink联合仿真,基于车辆运动学模型的mpc跟踪圆形轨迹。 可以设置不同车辆起点。 包含圆,直线,双移线三条轨迹 ,核心关键词:自动驾驶控制;MPC跟踪仿真;基于车辆运动学模型;圆形轨迹;Matlab联合仿真;双移线轨迹。,"MATLAB与Simulink联合仿真:基于车辆运动学模型的MPC自动驾驶控制圆形轨迹跟踪"
2025-10-26 21:01:41 286KB
1
随着科学技术的不断进步,汽车的普及使得车库的需求不断增长,智能车库系统的应用越来越广泛,它在现代建筑物的智能化管理中起着重要的作用。智能车库管理系统中,自动门控制是至关重要的一个组成部分。本文档提供了一份基于可编程逻辑控制器(PLC)的车库自动门控制技术方案设计书,重点阐述了如何利用PLC技术实现车库门的自动控制,以及如何通过软件和硬件设施的改进来提升系统运行的可靠性。 在设计中,首先需要明确PLC在自动门控制中的作用。PLC是一种专门为在工业环境下应用而设计的数字操作电子设备,它可以根据用户编写的程序对各种类型的输入信号进行逻辑处理,并输出相应的控制指令。自动门控制系统采用PLC进行控制,可以实现对车库门状态的实时监控和准确控制。 在自动门控制系统设计中,使用了两个感应探测器、一些开关及传感器作为系统的输入设备。这些输入设备负责检测车库门前是否有人车接近,并将检测到的信息反馈给PLC。在PLC接收到接近信号后,通过预设的程序控制变频器来调节门体运行的速度。同时,系统还需要具备门运行位置检测功能,确保车库门能够准确地到达开启和关闭的位置。此外,系统还需要具备故障检测功能,一旦检测到异常情况,能够立即发出警报并采取相应的处理措施。 在系统设计过程中,正确的PLC选型和变频器选型是保证系统稳定运行的关键。根据车库门的实际控制需求,选择合适的PLC型号和变频器,这直接关系到系统的响应速度、准确性和稳定性。控制系统设计还需要考虑如何与外部设备进行有效的连接,这涉及到外部端子接线图的设计,确保所有的输入输出设备都能与PLC进行正确无误的连接。 PLC控制梯形图是设计中另一个重要组成部分。梯形图是一种用于表示PLC控制逻辑的图形化编程语言,通过梯形图可以直观地展示出控制过程中的逻辑关系和控制顺序。本设计中对控制系统工作流程进行了合理的优化,确保在车辆接近时门能够及时开启,在车辆离开后门能够安全关闭。控制系统软件流程图和顺序功能图对整个自动门控制逻辑进行了详细描述,便于技术人员理解和实施。 在技术方案设计中,还需要注意系统的可维护性和可扩展性。随着车库的扩建或系统升级,控制程序和硬件设备可能会进行相应的调整。因此,在设计时应考虑到系统的灵活性,便于后续的维护和升级工作。 基于PLC的车库自动门控制系统设计不仅需要考虑技术的先进性和实用性,还应关注系统的安全性、稳定性和可靠性。通过对输入设备的精确检测、PLC的合理选型和程序的精心编写,以及系统的详细流程图设计,可以构建一个高效、安全、用户友好的车库自动门控制系统。
2025-10-23 21:55:48 482KB
1
内容概要:本文介绍了一种基于共直流母线架构的风力、光伏与储能联合并网发电系统仿真模型,涵盖光伏组件采用电导增量法实现MPPT控制,风机通过三相整流与MPPT策略调节功率,储能系统利用双向Buck-Boost电路进行电压电流双闭环控制以稳定800V直流母线电压,并网逆变器采用PQ控制实现恒功率并网。系统在Matlab/Simulink(2018b版)中仿真验证,并网电压电流总谐波畸变率(THD)低于5%,波形质量优异,具备高可靠性与工程参考价值。 适合人群:电气工程、新能源发电、电力电子与自动化相关专业的研究人员、研究生及从事风光储系统设计的工程师。 使用场景及目标:适用于新能源并网系统建模与仿真研究,目标为掌握MPPT控制、PQ控制、双闭环储能管理及多源协同并网技术的实现原理与参数设计方法,支撑科研项目开发或实际工程方案验证。 阅读建议:结合文中提供的Python与Matlab代码示例,深入理解各子系统控制逻辑,建议在Simulink环境中复现模型并调试关键参数以增强实践能力。
2025-10-22 19:58:26 741KB
1
内容概要:本文详细介绍了在C#中实现运动控制的技术方法,主要包括基础运动控制概念(位置控制、速度控制、加速度控制)、C#中实现运动控制的基本方法(串口通信、以太网/TCP/IP通信、第三方运动控制库的使用)、常见的运动控制命令、常用的运动控制算法(S-Curve加减速控制、PID控制)、常见的运动控制设备(伺服电机、步进电机、机器人臂、直线滑轨)以及常用的运动控制协议(Modbus、EtherCAT、CANopen)。 适合人群:具备C#基础编程能力和工业自动化相关背景的研发人员、工程师和技术爱好者。 使用场景及目标:本文章主要适用于开发涉及运动控制的应用项目,比如机械臂、自动化设备和机器人等。目的是帮助读者掌握如何通过C#实现与运动控制设备的通信和控制,提高项目的精度和效率。 阅读建议:读者可以通过逐步学习文中提供的示例代码,结合实际设备进行实践操作,从而更好地理解和应用C#中的运动控制技术
2025-10-10 22:46:10 81KB 运动控制 工业自动化
1