二摘代码MATLAB 使用浅层学习提取天际线 下面列出了我们的论文的完整实现,该代码的两个主要组件取决于Python和Matlab。 , 作者:,,和 要求 代码的浅层学习部分取决于Python和OpenCV。 它已经在虚拟环境中使用Python 3.6.10和OpenCV 4.3.0进行了测试。 而代码的动态编程部分取决于Matlab,并已使用Matlab 2016进行了测试。 数据集 我们已经基于玄武岩,Web和CH1这三个数据集学习了滤波器组,并且还在GeoPose3K数据集上进行了测试。 前三个数据集可以从主目录下载并放置在主目录中。 原始CH1数据集可从authors'获得。 此代码提供的版本仅是为了方便起见,请查阅原始版权和CH1数据集的使用条款。 此外,请从相应的下载GeoPose3K。 GeoPose3K数据集应放置在数据目录中。 供参考,这是我们的目录结构。 data ├── Basalt │ ├── ground_truth │ ├── images ├── CH1 │ ├── cvg │ │ ├── ground_truth │ │ ├── images │ ├─
2025-08-26 10:23:20 86KB 系统开源
1
kettle版本需9.4.0.0-343 1、解压后放入data-integration\plugins目录下 2、重启spoon 3、在转换下批量加载中可以看到此插件 4、插件配置:其中Fenodes应配置“ip:端口”端口为http_port默认8030 5、数据库信息按情况填写,其他内容保持默认即可。注意表字段的大小写要和流字段的保持一致 Kettle-Spoon是Pentaho公司的一款开源ETL工具,用于进行数据转换和抽取。doris是一个高性能的分析型数据库,适用于海量数据的实时分析。doris官方提供的doris-stream-loader是Kettle-Spoon的一个插件,用于将数据高效地从Kettle抽取到doris数据库中。 使用该插件需要首先检查Kettle的版本是否满足要求,即为9.4.0.0-343版本。一旦确认版本无误,便可以将doris-stream-loader插件解压并放入data-integration\plugins目录下。操作完成后,需要重启spoon,即Kettle的图形化界面,以确保插件能够被正确加载和识别。 重启后,在spoon界面的“转换”下选择“批量加载”,便可以看到新增的doris-stream-loader插件。这时,便可以对插件进行配置。配置主要包括两部分,首先是Fenodes配置。Fenodes指的是doris集群中的节点,需要按照“ip:端口”的格式进行配置,而端口通常情况下是http_port,其默认值为8030。还需要填写数据库信息。在配置数据库信息时,需要注意表字段的大小写要与流字段保持一致,以避免数据不匹配的问题。 doris-stream-loader插件的使用大大提高了数据从Kettle抽取到doris数据库的效率,这对于需要进行大数据量处理的用户来说是一个福音。但需要注意的是,使用该插件时,对Kettle和doris的版本和配置都有一定的要求,只有在严格遵循操作步骤和配置要求的前提下,才能确保数据抽取的顺利和高效。
2025-07-21 11:36:33 502KB doris kettle spoon
1
在当今数据爆炸的时代,信息检索与处理能力变得愈发重要。机器阅读理解(Machine Reading Comprehension, MRC)技术应运而生,旨在通过计算机程序理解文本内容并回答相关问题。BERT(Bidirectional Encoder Representations from Transformers)模型作为自然语言处理(Natural Language Processing, NLP)领域的重大突破,因其预训练的语言表征能力,在多种NLP任务中取得了显著的成绩。Pytorch是一个开源的机器学习库,它为深度学习模型提供了一个易于操作且功能强大的框架。使用Pytorch和BERT结合进行抽取式机器阅读理解的研究,是目前人工智能领域的热门方向。 抽取式机器阅读理解,顾名思义,是从给定的一段文本中抽取信息以形成答案。这种技术在自动回答问题、搜索优化、智能客服、聊天机器人等领域具有广泛的应用前景。基于Pytorch框架下实现的BERT模型,不仅可以快速地训练和部署,而且还能保持高效的性能和良好的可扩展性。 在进行项目开发时,研究人员通常需要处理大量的数据集。数据预处理是机器学习项目中至关重要的一步,它包括了文本清洗、分词、构建词汇表、生成数据批次等一系列复杂的过程。BERT模型利用其预训练好的语言表征,可以将文本转化为向量,这些向量能够捕捉词汇间的双向关系,从而更好地理解语言的语境和含义。 此外,模型训练也是机器阅读理解项目的关键一环。通常需要配置适当的超参数,如学习率、批处理大小、训练周期等,以保证模型能够在给定的数据集上收敛并达到最佳的性能。在Pytorch中,研究人员可以利用其简洁直观的API进行模型的搭建、训练和评估。 评估模型的性能通常依赖于一系列标准化的评测指标,如精确率、召回率和F1分数。这些指标能够从不同角度衡量模型的准确性和泛化能力。为了确保模型的鲁棒性和可靠性,交叉验证和超参数调优也是必不可少的步骤。 随着技术的不断进步,Pytorch + BERT的组合不仅仅局限于抽取式机器阅读理解,它还被广泛应用于文本分类、情感分析、命名实体识别等其他NLP任务。这些技术的发展为人工智能领域的研究者和工程师们提供了更多的可能性,推动了自然语言理解技术的深入研究和广泛应用。 为了更好地适应未来的发展,研究人员需要紧跟最新的技术动态,不断探索新的算法和模型结构,以实现更高级别的机器理解能力。同时,为了满足实际应用中的各种需求,还需注重模型的效率和稳定性,确保技术解决方案能够在各种场景下提供可靠的性能支持。 基于Pytorch + BERT的抽取式机器阅读理解项目不仅仅是对现有技术的一次应用,更是对自然语言处理领域深度学习方法的一次深入探索。通过此类项目的实践,研究者能够更加深入地理解机器阅读理解的机制,并推动相关技术的创新和发展。
2025-06-20 10:31:50 2.02MB 项目 程序设计
1
本文将深入探讨“BiLSTM+Attention实现SemEval-2010 Task 8关系抽取”的技术细节。BiLSTM(双向长短时记忆网络)和Attention机制是自然语言处理(NLP)中的重要工具,BiLSTM通过结合前向和后向LSTM,能够有效捕捉序列数据的上下文信息,而Attention机制则可让模型在处理序列时对关键部分分配更多权重。在关系抽取任务中,BiLSTM为每个词生成融合上下文信息的向量,Attention则通过计算关联性得分,帮助模型聚焦于对关系识别有价值的部分。 在PyTorch框架下实现该模型,主要分为以下步骤:首先是数据预处理,通过utils.py完成数据清洗、分词、词嵌入及数据集划分等工作;接着是配置参数,在config.py中定义超参数,如隐藏层大小、学习率等;然后是模型构建,在model.py中定义BiLSTM和Attention层,BiLSTM处理输入序列,Attention基于其输出计算权重并生成句向量;之后是训练过程,run.py负责模型初始化、定义损失函数、执行反向传播及保存模型;接下来是评估与预测,evaluate.py用于在验证集和测试集上评估模型性能,同时借助SemEval提供的官方脚本计算F1分数;最后是日志与结果记录,train.log记录训练过程中的日志信息,predicted_result.txt存储预测结果。 本项目利用BiLSTM和Attention机制提升关系抽取性能,借助PyTorch框架实现了在SemEval-2010 Task 8任务上的高效训练和评估。通过深入研究代码和实践,可以加深对NLP中序列模型和注意力机制的理解。
2025-06-19 16:49:37 51KB 关系抽取 BiLSTM+Attention
1
1 使用glm4-flash免费的API进行文本QA问答数据抽取,40个煤矿领域安全的规章文本,最终抽取出837个样本共8万token进行微调 2 使用第一步抽取的文本QA问答数据基于glm4-flash微调出一个煤矿安全大模型,并进行测试 在人工智能领域,文本问答系统一直是一个热门的研究方向,尤其是在特定领域内,如矿山安全,这样的系统能够有效地提供专业信息查询和问题解答。本项目展示了如何利用glm4-flash免费API进行文本问答数据的抽取,以及基于这些数据训练和微调一个针对煤矿安全的大模型。 项目从40个煤矿领域的安全规章文本中抽取了837个样本,总共涉及8万token(token是文本处理中的一个单位,可以是一个词、一个字母或一个符号)。这一步骤至关重要,因为它决定了模型能否获取到足够且高质量的数据来进行学习。通过使用glm4-flash的API,研究人员能够有效地从这些规章文本中识别和抽取出与问答相关的数据,为后续的模型训练提供了原材料。 接下来,使用第一步中抽取的问答数据对一个基础模型进行了微调。微调是指在预训练模型的基础上,用特定任务的数据对模型进行进一步的训练,以提高模型在该任务上的表现。在这个案例中,研究人员将模型微调为一个专门针对煤矿安全问答的“大模型”。这个模型经过微调后,不仅能够理解煤矿安全相关的专业术语和概念,还能够对相关问题给出准确的答案。 在这个过程中,所用到的技术和方法包括自然语言处理(NLP)、机器学习(ML)、以及深度学习等。特别是,深度学习中的预训练模型如BERT、GPT等,因其强大的语义理解和生成能力,在文本问答系统中扮演了重要角色。而glm4-flash API的使用,显示了利用现有工具和资源,即使是免费的,也可以取得相对良好的效果。 此外,本项目的研究成果不仅仅限于模型的训练和微调,还包括了模型的测试阶段。测试是一个验证模型性能和准确度的重要环节,通过一系列的测试,可以确保模型在实际应用中的可靠性和稳定性。对于煤矿安全这样一个对准确性要求极高的领域,这一点显得尤为重要。 本项目的标签为“数据集”、“矿山安全”和“大模型”,这准确地概括了项目的核心内容和应用方向。数据集是人工智能研究的基础,提供了模型学习的材料;矿山安全强调了应用的领域和目的;大模型则体现了模型的规模和复杂性,以及背后的技术深度。 该项目展示了如何利用现有资源进行高效的数据抽取,进而训练出一个针对特定领域(煤矿安全)的问答大模型。这种方法论不仅适用于矿山安全领域,也可以被广泛地应用到其他专业领域,推动人工智能在更多场景中的实际应用。
2025-05-31 15:30:10 772KB 数据集 矿山安全
1
基于Vivado软件的Verilog半带滤波器仿真程序:涵盖IP核与非IP核实现流程,信号发生、合成、抽取变频等全环节模拟,基于fpga的半带滤波器仿真程序 1.软件:vivado 2.语言:Verilog 3.具体流程:包括ip核实现版本与非ip核实现版本,包含信号发生,合成,半带滤波器,抽取变频,fifo,fft流程,非常适合学习。 ,基于FPGA的半带滤波器仿真程序; Vivado软件; Verilog语言; IP核实现版本; 非IP核实现版本; 信号发生与合成; 半带滤波器; 抽取变频; FIFO; FFT流程。,基于Vivado的Verilog半带滤波器仿真程序:IP核与非IP核实现版本分析
2025-05-26 23:07:18 352KB
1
命名实体识别(NER)是自然语言处理(NLP)领域中的关键任务,它涉及识别文本中具有特定意义的实体,如人名、地名、组织名等。标题“中文NER集合”表明这是一个专注于中文环境下的命名实体识别资源集合。描述中提到的“基于马尔科夫逻辑的命名实体识别技术”,暗示了该压缩包可能包含一些利用马尔科夫逻辑网络(Markov Logic Networks, MLNs)的方法来解决中文NER问题的研究。 马尔科夫逻辑网络是一种概率逻辑框架,它结合了马尔科夫随机场和第一阶逻辑的优点,可以用于建立复杂的语义关系模型。在NER中,MLNs可以用来捕捉实体之间的局部和全局上下文信息,以提高识别准确性。例如,一个实体的类型可能与其前后词汇有关,MLNs可以通过定义这些依赖关系的规则来帮助识别。 压缩包中的文件名称提供了更多线索: 1. "NER综述.pdf":这可能是一个全面的NER技术综述,涵盖了各种方法和技术,包括传统的统计模型和深度学习方法。 2. "SSSSSSSSSSSSSSSSSSSSSSSOpen Information Extraction from the Web.pdf":可能探讨的是从互联网上提取开放信息,可能包括NER作为信息提取的一部分。 3. "基于层叠隐马尔可夫模型的中文命名实体识别.pdf":这可能是介绍如何使用层叠隐马尔可夫模型(Cascaded HMMs)进行中文NER的论文,这是一种经典的序列标注模型。 4. "Open Domain Event Extraction from Twitter.pdf":可能关注的是从社交媒体,特别是Twitter中提取开放领域的事件,这通常需要有效的NER来识别事件相关的实体。 5. "一种开放式中文命名实体识别的新方法.pdf":这可能描述了一种新的、创新的中文NER算法,可能采用了不同于传统方法的策略。 6. "[46]ner.pdf":文件名较简单,但可能是一个特定的NER研究或技术的详细说明,编号可能表示参考文献的序号。 这个集合对于学习和研究中文NER非常有价值,它可能包含了理论概述、经典模型的解释、最新方法的介绍以及实际应用案例。通过深入阅读这些资料,我们可以了解命名实体识别的发展历程,比较不同方法的优缺点,以及如何将这些技术应用于实际的数据挖掘和事件抽取任务。此外,对于想要在中文环境下提升信息提取和理解能力的研究者和开发者来说,这些资源无疑是一个宝贵的资料库。
2025-05-19 20:41:54 1.65MB 命名实体识别 数据挖掘 事件抽取
1
第三章对线性调频雷达的干扰 第三章对线性调频雷达的干扰 雷达的工作原理是通过对回波信号的检测发现目标并测量目标的参数信息 的,所以干扰的重点就落在了对雷达信号的利用上面。干扰的目的就是要破坏雷 达这样一个工作的流程,让干扰信号能够尽可能多的进入到雷达接收机,使雷达 不能正常的对目标信息进行探测或者得到错误的目标参数信息。 对雷达干扰的分类有很多种,按是否辐射电磁能量可以分为有源干扰和无源 干扰。利用干扰机产生电磁能量,主动施放电磁能量的方式称为有源干扰。本身 不主动辐射,而是反射、改变敌方的辐射能量称为无源干扰。例如箔条干扰,就 是利用箔条对雷达波的反射,在雷达接收机中产生较强的噪声,形成对雷达的电 磁压制干扰效果,因而它属于无源压制干扰。有源干扰按干扰效果可以分为压制 式干扰和欺骗式干扰。压制式干扰利用噪声和类似噪声的干扰信号进入雷达接收 机,压制真实目标的回波信号,使雷达不能正确的得到目标的参数信息。欺骗式 干扰是通过转发或者直接发射携带假目标信息的信号到雷达的接收机,使雷达的 目标检测和跟踪系统不能正常的检测出真实目标,同时将产生的假目标误认为是 真目标,从而达到以假乱真的目的。 目前对LFM雷达的干扰研究较多∞刮,主要是因为LFM信号其压缩的原理是利 用了不同频率分量经过匹配滤波器后的延迟特性不同来达到压缩效果的。对LFld 雷达的干扰主要有:射频噪声干扰,噪声调制干扰,延时转发干扰,移频干扰,等 间隙取样干扰等。噪声干扰由于通过匹配滤波器几乎不会获得压缩处理增益,所 以,需要能发送大功率信号的干扰机,这给工程实现带来了困难。于是干扰界提 出了基于卷积噪声的灵巧干扰方法,一方面利用信号的压缩特性,一方面利用噪 声的随机性来产生干扰信号,这种方法能获得很好的压制干扰效果。延时转发干 扰是将截获到的雷达信号存储后通过不断的转发在雷达的距离轴上产生距离拖引 的干扰效果。移频干扰是人为的对收到的雷达信号加一个多普勒频率调制,从而 使产生的假目标相对于真实目标有一个距离上的延时,以达到欺骗干扰效果。等 间隔取样干扰是通过低采样率对信号欠采样,利用不同频率分量的加权幅度不一 致来产生成串具有随机性的假目标,主假目标产生欺骗干扰效果,其他旁瓣假目 标产生压制的干扰效果。
2025-04-16 16:25:13 3.77MB
1
关系抽取是自然语言处理(NLP)领域的一个关键任务,其目标是从文本中识别出实体之间的语义关系,如“人名”与“职位”之间的关系、“疾病”与“症状”的关联等。在这个背景下,“基于依存句法的关系抽取”指的是利用依存句法分析来辅助识别这些关系的方法。依存句法分析是NLP中的另一重要技术,它关注的是句子中词与词之间的结构关系,即依存关系,通常表示为树状结构,其中每个词都有一个或多个依赖(或子依赖),表示词汇间的功能关系。 在Python中,我们可以使用多种库来实现基于依存句法的关系抽取,例如斯坦福依存解析库(Stanford CoreNLP)、NLTK(Natural Language Toolkit)和Spacy。这些库提供了丰富的工具和接口,用于进行依存句法分析、词性标注、命名实体识别等预处理步骤,为关系抽取提供基础。 1. **斯坦福依存解析库(Stanford CoreNLP)**:这是一个强大的Java工具包,但也可以通过Python接口(如stanfordnlp)使用。它提供了完整的NLP工作流程,包括依存句法分析。需要下载并设置Java环境,然后安装Python绑定。之后,可以使用库中的`CoreNLPClient`来分析文本,提取依存关系。 2. **NLTK**:NLTK是一个广泛使用的Python NLP库,虽然它的依存句法分析能力相对较弱,但它可以与MaltParser或UDPipe等外部解析器结合使用。需要下载相关的数据资源,然后调用`nltk.parse.malt`模块进行句法分析。 3. **Spacy**:Spacy是一个现代、高效的NLP库,内置了依存句法解析功能。它提供了简洁的API,可以方便地进行关系抽取。只需安装Spacy和对应的语言模型,例如`spacy.load('en_core_web_sm')`加载英文模型,然后使用`.parse()`或`.dep()`方法来获取依存关系图。 关系抽取通常涉及以下步骤: 1. **预处理**:对输入文本进行清洗,去除标点符号、数字等无关信息,以及进行分词。 2. **实体识别**:识别出文本中的关键实体,如人名、组织名、日期等,这通常通过命名实体识别(NER)完成。 3. **依存句法分析**:分析句子结构,找出词与词之间的依存关系,确定主谓宾等基本成分,以及修饰关系。 4. **关系抽取规则定义**:定义各种关系模式,比如“动词+名词”可能表示动作执行者与动作的关系,或者“介词+名词”可能表示位置关系等。 5. **关系匹配**:根据依存关系图,匹配定义的关系模式,识别出符合模式的实体对及其关系。 6. **后处理**:可能需要进一步的规则调整、冲突解决和关系分类,以提高抽取结果的准确性。 在Python中,可以结合这些库提供的功能,构建自己的关系抽取系统。例如,可以先使用Spacy进行分词和依存句法分析,然后利用NLTK进行更复杂的句法分析,最后利用Stanford CoreNLP进行实体识别,整合各个步骤的结果,实现高效的关系抽取。 为了优化性能,可以考虑使用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN),甚至更先进的Transformer模型,如BERT或RoBERTa,它们在预训练阶段已经学习了大量的语言知识,可以直接应用于关系抽取任务,通常能取得更好的效果。 基于依存句法的关系抽取是NLP中一项复杂但重要的任务,通过Python的各种库和工具,我们可以构建出高效且准确的关系抽取系统,服务于信息提取、知识图谱构建等多种应用场景。在实际操作中,需要不断优化模型和算法,以适应不同的语料和需求。
2025-03-27 09:18:19 740.57MB python
1
BERT+BiLSTM+CRF是一种用于命名实体识别(Named Entity Recognition, NER)的深度学习模型。其中,BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,用于捕捉上下文信息;BiLSTM(双向长短时记忆网络)用于处理序列数据;CRF(条件随机场)用于解决标签偏置问题,提高模型的预测准确性。 在训练过程中,需要将输入数据转换为适当的格式,并使用适当的损失函数和优化器进行训练。在推理阶段,可以使用训练好的模型对新的文本进行命名实体识别。
2024-03-08 14:14:58 1.03MB pytorch pytorch 自然语言处理 bert
1