为有效指导露天煤矿制定正确生产计划,提高露天煤矿抛掷爆破预测的准确率,在分析露天煤矿抛掷爆破影响因素的基础上,通过"试错法"确定模型最优隐含层节点参数,进而提出一种参数优化后遗传算法(GA)和极限学习机(ELM)相结合的抛掷爆破预测模型。选取网络的输入输出相关参数,针对现有ELM输入权值矩阵和隐含层偏差,采用遗传算法对其进行优化选择;利用某露天煤矿抛掷爆破监测数据对该模型进行实例分析,并将RBF,BP,SVM,GA-BP模型预测结果与该模型进行对比分析;并引入Weibull模型,通过预测控制参数ɑ,β模拟爆堆形态。研究结果表明:(1)通过"试错法"确定GA-ELM模型最优隐含层节点数为39,有效降低系统的仿真误差,该参数下仿真误差值为0.137 7;(2)相较于传统ELM预测模型,通过遗传算法优化后,有效抛掷率,松散系数以及抛掷距离均得出更小的均方误差MSE值(0.258 0,1.748 5×10-4,3.618 4)和更高的决定系数R2值(0.986 4,0.995 3,0.970 6),改进后的GA-ELM具有更好的拟合效果和泛化能力;(3)通过与其他智能算法如BP,RBF,SVM
1