批量归一化 在对神经网络的优化方法中,有一种使用十分广泛的方法——批量归一化,使得神经网络的识别准确度得到了极大的提升。 在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常大,使得网络无法进行计算。产生梯度爆炸的原因是因为网络的内部协变量转移,即正向传播的不同层参数会将反向训练计算时参照的数据样本分布改变。批量归一化的目的,就是要最大限度地保证每次的正向传播输出在同一分布上,这样反向计算时参照的数据样本分布就会与正向计算时的数据分布一样了,保证分布的统一。 了解了原理,批量正则化的做法就会变得简单,即将每一层运算出来的数据都归一化成均值为0方差为1的标准高斯分布。这
2021-12-26 10:45:59 68KB ens low ns
1
MNIST-Tensorflow 99.6599% 我写了一个Tensorflow代码用于MNIST数据的分类。 您可以使用以下命令获取结果: python main.py 此代码具有以下功能 使用了数据扩充(训练数据:50,000-> 250,000) 使用具有He_initializer的3x3转换,交错转换,衰减速率为0.9的batch_norm,Max_Pooling 激活功能为tf.nn.leaky_relu 使用全球平均池代替MLP 使用L2正则化损失,学习率衰减,beta1 = 0.5的Adam优化 它包含Tensorboard,保存,恢复的代码 环保环境 操作系统:Ubuntu 16.04 的Python 3.5 Tensorflow-gpu版本:1.4.0rc2(要求版本1.4.0以上) 如果出现错误,例如: "Expected int32, g
2021-12-11 04:21:24 15.31MB Python
1
1.由来: 由google2015年提出,深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层神经网络更加容易和稳定。 2.作用 BN的作用就是将这些输入值或卷积网络的张量进行类似标准化的操作,将其放缩到合适的范围,从而加快训练速度;另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性 3.操作阶段 4.操作流程 计算每一层深度的均值和方差 对每一层设置2个参数,γ和β。假设第1深度γ=2、β=3;第2深度γ=5、β=8。 使用缩放因子γ和移位因子β来执行此操作。 随着训练的进行,这些γ和β也通过反向传播学习以提高准确性。这就要求为每一层学习2个
2021-10-10 20:22:59 252KB 归一化 批量归一化 残差
1
图像归一化,就是(数值-min)/(max-min),把结果都划归到0-1范围,便于不同变量之间的比较,取消了不同数量差别。我们利用python的arcpy包对栅格数据批量归一化,而且再保证属性中没有最大值和最小值信息的情况下也能实现归一化计算。
2021-08-03 19:34:10 783B python 批量归一化 栅格数据
1
自用BN操作 适用所有的算法 只需要改一些必要的层链接 深度学习 批量归一化 python余语言 tensorflow pytorch 均可使用
2021-05-18 21:04:46 3KB 深度学习
1
主要介绍了TensorFlow实现批量归一化操作的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2021-05-04 21:46:41 70KB TensorFlow 批量归一化 TensorFlow 归一化
1
批量归一化(BatchNormalization) ps 批量归一化本质上是对数据的标准化处理,输入标准化一般用于浅层模型,但是对于深层网络,输入的标准化不够,因为随着模型的迭代更新,依然容易造成靠近输出层,它的数据是剧烈变化的。所以批量归一化的出现是应对深度模型的。 对输入的标准化(浅层模型) 处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。 标准化处理输入数据使各个特征的分布相近 批量归一化(深度模型) 利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。 1.对全连接层做批量归一化 (形状 m×d,对m个元素做批量归一化
2021-03-20 22:42:31 208KB “人造太阳”计划 mean num
1
实现MATLAB图片批量归一化,去掉图像中面积(像素点总数)小于50的区域之后,将图像归一化为256*256的图片
2019-12-21 18:53:16 1KB MATLAB,批量
1