内容概要:本文详细介绍了1992年AYAWA提出的基于扰动观测器的转动惯量辨识方法。该方法通过利用扰动观测器不仅实现了惯性识别,还进行了扰动补偿。系统由四个主要部分组成:速度反馈控制、惯性扭矩前馈控制、扰动观测器和惯性识别部分。扰动观测器通过估计扰动扭矩分量间的正交关系,计算出转动惯量,从而提高了系统的响应速度和精度。文中提供了详细的算法实现步骤和伪代码示例,帮助读者理解和实现这一技术。 适合人群:对运动控制系统感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于需要高精度惯性识别的运动控制系统,如机器人、自动化设备等领域。目标是提升系统的稳定性和响应速度。 其他说明:建议读者查阅相关学术文献以深入了解算法的数学基础和实验验证。
2025-06-25 10:37:54 823KB 控制算法
1
基于扰动观测器的伺服系统摩擦补偿Matlab仿真 1.模型简介 模型为基于扰动观测器的摩擦补偿仿真,仿真基于永磁同步电机速度、电流双闭环控制结构开发,双环均采用PI控制,PI参数已经调好。 仿真中主要包含抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM、逆变器和永磁同步电机模块等,其中抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM模块均采用matlab function编程实现,其与C语言编程较为相似,容易进行实物移植。 模型均采用离散化仿真,其效果更接近实际数字控制系统。 2.算法简介 伺服系统中,由于摩擦力的存在,会降低系统响应,因此对摩擦力进行补偿是有必要的。 本仿真通过增加LuGre摩擦力模型,模拟摩擦力对系统性能的影响。 通过扰动观测器对摩擦力进行观测并进行补偿,降低摩擦力对系统性能的影响。 3.仿真效果 ① 加入摩擦力,速度给定为正弦波,模拟速度反复过零的情况。 由于摩擦力的存在,实际速度过零时不能很好的跟踪速度给定信号,如图1所示,0.6s前没有使用扰动观测器,速度过零时,速度跟踪误差很大。 0.6s后,开启扰动观测器
2024-09-25 16:00:34 90KB matlab
1
使用simulink对非线性扰动观测器matlab仿真例程
2023-11-16 15:56:03 50KB matlab
1
基于有限时间扰动观测器的非奇异终端滑模控制,用于基于脉冲宽度调制的负载失配DC-DC降压转换器
2023-05-22 20:32:49 742KB 研究论文
1
终端滑模控制设计 包括一篇外文文献和matlab仿真程序
2023-05-16 13:22:57 230KB matlab 算法 开发语言
1
基于原创博客:[学习分享]滑模控制、终端滑模控制、非奇异快速,趋近律、饱和函数、Matlab仿真、干扰、非线性控制[半天入门]
2023-03-23 16:17:08 2.08MB 滑模控制 终端滑模 matlab 仿真复现
1
针对普通滑模控制难以使稳态误差快速趋于0的确定,设计Terminal函数的滑模切换面,可以调整稳态误差趋于0的时间。使用了二阶系统进行仿真分析,利用S函数编写被控对象和基于指数趋近的滑模控制器,用simulik建立模型,并在分析结果中添加了跟踪误差及误差变化率等观测输出,含实现的模型和程序,完美运行,另外点击我的专栏“滑模控制”可以查看详细解析和推导,手把手带你学会滑模控制。
2022-09-14 18:08:30 27KB 控制器 算法 滑模控制 matlab
1
针对周期离散系统的跟踪控制问题,提出一种有限时间单调收敛的无抖振吸引律,讨论扰动补偿措施并将其嵌入吸引律形成理想误差动态用于设计离散重复控制器.通过分析补偿误差上界说明扰动补偿措施能抑制重复控制未能消除的扰动,通过推导控制器稳态误差带说明吸引律的收敛性可使系统具有鲁棒稳定性.针对伺服电机系统的仿真与实验验证了设计工作的有效性.
1
针对复杂航行环境下的无人水面艇系统,提出一种基于有限时间扰动观测器的无人水面艇精确航迹跟踪控制策略.该控制方法具有以下显著特点:能够精确补偿未知海洋干扰,可实现精确跟踪控制;相比传统的渐近收敛控制算法,有限时间稳定性确保跟踪控制系统具有更快的收敛速度和更强的扰动抑制能力;能够同时确保扰动观测误差和航迹跟踪误差在有限时间内精确收敛到零.仿真结果验证了所提出控制方法的有效性和优越性.
1
针对遭受未知外部环境扰动的三自由度全驱动船舶轨迹跟踪控制问题,设计一种带扰动观测器的自适应动态面滑模控制方法。该方法构造扰动观测器估计未知扰动,并对控制量进行前馈补偿,采用σ修正泄漏项的自适应律估计扰动观测误差的界以提高控制精度,结合动态面技术解决传统反演法的微分爆炸问题,并选取李雅普诺夫函数证明该控制器可保证闭环系统内所有信号的一致最终有界性。基于一艘供给船舶进行仿真试验,结果表明,所设计的控制器输出合理有效且跟踪精度高,在工程实际中具有一定的参考价值。