手语手势识别是一种重要的通信方式,特别是在为聋哑人提供无障碍交流方面发挥着关键作用。随着科学技术的进步,尤其是生物信号处理和机器学习领域的快速发展,基于sEMG(表面肌电信号)和IMU(惯性测量单元)的手势识别技术已经成为研究热点。本项目涵盖了从数据收集到实时识别的全过程,以下将详细介绍其中的关键知识点。 **数据收集**是整个系统的基础。sEMG传感器被放置在手部肌肉上,记录肌肉收缩时产生的电信号。这些信号反映了手指和手腕运动的信息。同时,IMU通常包含加速度计、陀螺仪和磁力计,用于捕捉手部的三维姿态和运动。通过同步采集sEMG和IMU数据,可以得到丰富的手势信息。 **数据预处理**是提高识别准确性的关键步骤。**去噪**是必要的,因为sEMG信号易受噪声干扰,如电源噪声、肌纤维颤动等。通常采用滤波技术,如 Butterworth、Chebyshev 或巴特沃斯滤波器,来去除高频和低频噪声。接着,**特征提取**是识别的核心,这可能包括幅度特征(如均值、峰值、方差等)、时间域特征(如上升时间、下降时间)和频率域特征(如功率谱密度、谐波分析)。此外,**数据分割**也很重要,通常根据手势的起始和结束点进行切分,确保每个样本对应一个完整的手势。 接下来,**神经网络搭建**是模型训练的核心。可以选择多种神经网络架构,如卷积神经网络(CNN)利用其在图像处理中的强大能力处理sEMG的时间序列数据,或者循环神经网络(RNN)、长短时记忆网络(LSTM)捕捉时间序列的依赖关系。更先进的模型如门控循环单元(GRU)也可以考虑,它们在处理序列数据时能更好地处理长期依赖问题。 在模型训练过程中,**超参数调整**至关重要,包括学习率、批量大小、网络层数、节点数量等。**优化器**的选择也会影响训练效果,如随机梯度下降(SGD)、Adam或RMSprop。同时,为了避免过拟合,通常会采用**正则化**(如L1、L2正则化)和**dropout**策略。 实现**实时识别**需要优化模型以满足实时性能的要求。这可能涉及到模型轻量化、硬件加速(如GPU或专门的AI芯片)以及高效的推理算法。为了保证流畅的用户体验,识别速度和准确性之间的平衡是实时识别系统设计的关键。 基于sEMG和IMU的手势识别是一个涉及生物信号处理、数据预处理、深度学习模型构建和实时应用等多个领域的复杂工程。这个项目涵盖了这些关键技术点,对于理解手语识别系统及其在现实世界中的应用具有很高的价值。
2025-06-19 16:47:53 39.78MB
1
为了满足聋哑人与正常人交流的需求,研究者们致力于开发能够实现手语到语音转换的系统。这样的系统对于改善聋哑人的社交能力及生活质量具有重要意义。本研究介绍了一种通过深度学习方法实现手语到普通话和藏语语音转换的系统。该系统融合了基于受限玻尔兹曼机(RBM)调节和深度反馈微调的深度学习技术,支持向量机(SVM)对手势的识别分类,以及基于隐马尔可夫模型(HMM)的语音合成技术。 深度学习技术中的受限玻尔兹曼机(RBM)被用来初始化深度模型的权值。RBM是一种无监督学习的神经网络,通常用于特征学习和数据预处理。通过RBM的调节,可以得到适合深度学习模型输入的数据格式,并对模型进行有效的初始化。深度模型包括多个层次,RBM可以调节相邻层之间的权值,从而实现权值的优化。通过反馈微调,系统可以提取出样本的本质特征,更好地处理输入数据。 支持向量机(SVM)是一种监督学习的方法,常用于分类和回归分析。在本研究中,SVM被用于识别和分类30种不同的静态手势。根据手势识别出的语义信息,系统能够获取手势的上下文相关标注。上下文相关标注对于后续的语音合成过程至关重要。 语音合成技术中的隐马尔可夫模型(HMM)是一种统计模型,用于描述系统的动态特性。在语音合成领域,HMM可以用来模拟语音信号的生成过程。研究者们利用说话人自适应训练技术,通过HMM实现了汉藏双语语音合成系统。该系统可以根据手势识别出的上下文相关标注,将手势信息转换成普通话或藏语语音。 实验结果表明,该系统在静态手势识别上达到了93.6%的高识别率。转换成语音后,平均MOS得分为4.0分,这表明语音质量高,接近自然人的发音水平。这一系统的设计和实现对于手语的识别和转换技术来说,具有突破性的进步。 目前,尽管基于计算机视觉的手语识别技术已获得越来越多的关注,但其多集中在单一领域,鲜有研究同时考虑语音输出问题。本研究将语音合成系统与手语识别技术相结合,实现了手语到语音的转换,对于解决残疾人的交流问题具有重要的研究意义。 早期的研究使用数据手套来实现手势到语音的实时转换。但这种方法存在操作不便、设备昂贵和难以推广的问题。相比之下,本研究提出的方法无需穿戴复杂的数据手套,仅通过手势识别即可转换成语音,降低了成本且提高了实用性。 本研究展示了系统框架,并详述了手势识别的具体过程。手势识别过程首先通过RBM进行权值初始化,然后利用深度模型进行反馈微调,最终通过SVM实现静态手势的识别和分类。识别过程基于两位不同测试人打出的30种静态手势,这些手势代表了丰富的语义信息。 研究得到了国家自然科学基金、甘肃省杰出青年基金和甘肃省自然科学基金的支持,这表明了该研究方向的重要性和应用前景。通过相关领域专家和团队的努力,未来有望进一步优化和提升手语到语音转换系统的性能,使之能够更广泛地服务于社会,帮助言语障碍者更好地融入社会生活。
2025-06-19 16:16:14 619KB 研究论文
1
【即时手语翻译手套设计概览】 即时手语翻译手套是一种创新的技术装置,它旨在打破聋哑人与听力正常人群之间的沟通障碍。这种手套通过捕捉并解析手语动作,将其转化为语音或文字输出,实现即时的双向交流。设计这样的装置需要深入理解手语语言的复杂性,同时结合传感器技术、微电子技术、数据处理算法以及无线通信技术。 【手语识别原理】 手语翻译手套的核心在于对手部动作的精确识别。手套内部通常嵌入多种传感器,如压力传感器、陀螺仪、加速度计等,这些传感器可以检测手指弯曲程度、手腕旋转角度以及手势的运动轨迹。通过收集这些数据,设备能识别出不同的手语字母、单词甚至短语。 【数据处理与翻译算法】 收集到的传感器数据需要经过复杂的算法处理,这通常包括信号滤波、特征提取、模式匹配等步骤。机器学习算法,如支持向量机(SVM)、神经网络(NN)等,被用于训练模型以识别特定的手势。一旦手势被正确识别,系统会将手语信号转化为对应的文本或语音输出,这个过程可能涉及到自然语言处理(NLP)技术,确保翻译的准确性和流畅性。 【硬件设计与实现】 硬件部分包括手套主体、传感器模块、微控制器、无线通信模块以及电源管理单元。手套材料应具备一定的柔韧性和耐用性,以便穿戴者舒适地进行手语表达。微控制器负责收集和处理传感器数据,而无线通信模块(如蓝牙或Wi-Fi)则负责将翻译结果传输到智能手机或电脑等终端设备上。 【软件应用与用户体验】 配套的软件应用程序是另一个关键组成部分,它负责接收、显示或播放翻译结果。用户界面应该直观易用,允许听力正常的人士查看文字转译或听取语音输出,同时也让聋哑人能够通过手套发送手语信息。此外,软件可能包含一个手语词典,帮助用户学习和理解手语。 【挑战与前景】 即时手语翻译手套的发展面临着诸多挑战,如提高识别精度、减少延迟、增强用户友好性和电池续航等。随着技术的进步,我们有理由期待这种装置在教育、医疗、社交等多个领域发挥重要作用,为聋哑人群提供更平等的沟通机会,推动社会的包容性发展。 总结,即时手语翻译手套是一项融合了多学科技术的创新设计,它的实现需要传感器技术、数据处理算法、硬件工程和软件应用的紧密结合。未来,随着技术的不断迭代和优化,这类设备有望成为无障碍沟通的重要工具,促进聋哑人群与社会的互动。
2025-06-19 16:14:43 312KB
1
《构建语音到手语转换器:Python实现》 在当今技术日新月异的时代,无障碍通信已经成为社会进步的重要标志。语音到手语转换器是一种创新技术,它将语音输入转化为手语动画,为听障人士提供了更为便捷的交流方式。本项目——"Speech_to_Sign_Language_converter"正是这样一款应用,它利用Python编程语言实现了这一功能,能够将用户的语音输入转化为相应的手语单词GIF文件。 一、项目概述 "Speech_to_Sign_Language_converter"的核心在于语音识别和图像生成两部分。系统通过麦克风捕获用户的语音,然后利用语音识别技术将其转化为文字。接着,这些文字被映射到对应的手语动作序列,通过图像处理技术将这些动作生成为动态GIF图像,呈现出手语的完整过程。 二、核心技术 1. 语音识别:项目可能采用了如Google的Speech-to-Text API或Python库如`speech_recognition`来实现语音转文字的功能。这些工具能够高效地将音频流转化为可读文本,为后续的手语转换提供基础。 2. 手语映射:这部分涉及到创建一个手语词典,将文字与特定的手语动作相对应。这可能包括对手语数据库的研究,以及设计算法来匹配输入的文本与手语动作的序列。 3. 图像生成:为了将手语动作序列转化为可视化的GIF,项目可能使用了Python的图像处理库如`PIL`(Python Imaging Library)或`imageio`。这些库可以方便地创建、编辑和保存动态图像,确保手语动作流畅且易于理解。 三、项目结构 根据提供的压缩包文件名"Speech_to_Sign_Language_converter-main",我们可以推测项目的主要代码和资源可能存储在这个主目录下。通常,项目可能包含以下几个部分: 1. `main.py`:项目的主入口,负责协调整个流程,包括录音、识别、映射和图像生成。 2. `config.py`:配置文件,用于设置API密钥、路径和其他运行时参数。 3. `models`:可能包含训练好的模型或预定义的手语动作数据结构。 4. `data`:手语词典和图像资源可能存储在此目录下。 5. `utils`:辅助函数和工具模块,例如音频处理和图像生成的函数。 四、挑战与拓展 实现这样的转换器面临诸多挑战,包括但不限于: 1. 语音识别的准确性:不同人的口音、语速和清晰度都会影响识别效果。 2. 手语多样性:手语有地域性和文化差异,同一词汇在不同地区可能有不同的手势。 3. 实时性:在实时通信场景中,快速准确的转换至关重要。 为了优化,可以考虑以下拓展方向: - 使用深度学习模型提高语音识别的精度。 - 结合自然语言处理技术,理解语境以选择更合适的手语表达。 - 引入用户反馈机制,学习和适应个人习惯和偏好。 总结,"Speech_to_Sign_Language_converter"是一个结合了语音识别、图像处理和机器学习等多领域技术的项目,旨在打破沟通障碍,为听障群体提供更友好的交互体验。通过不断迭代和优化,这种技术有望在未来的无障碍通讯领域发挥更大作用。
2025-06-04 15:02:46 2.89MB Python
1
内容概要:本文档详细介绍了一个利用USTC数据集并结合MediaPipe及YOLOv11算法来创建手语视频识别系统的方法。该系统的特色功能包括但不限于实时视频流的手势识别、高效数据处理流程、通过多种预处理技术和数据扩增手段提高了系统的鲁棒性和灵活性,且支持自定义识别设置,如调整信心分数门限和重叠比阈值。 适用人群:针对从事多媒体信号处理的研发团队、高校科研人员以及对手势识别技术感兴趣的工程专业人员。 使用场景及目标:用于手语视频识别的应用场景下测试或作为教育目的帮助学生学习手语翻译系统的设计理念与实践。具体目标为搭建一套能够精准识别手势且具有良好用户体验感的产品原型。 其他说明:文档提供了详尽的技术说明及相应的代码示例,涵盖了数据增强、目标检测和图形界面实现等部分的内容,并附带了完整的数据集和模型文件,利于直接导入并实验。
2025-03-16 22:28:08 40KB MediaPipe 手语识别 GUI界面
1
使用CNN进行手语检测:使用人的手势和使用CNN-Keras-tensorflow的手势控制计算器识别ASL字母和数字
2023-04-07 19:13:38 24.86MB opencv scikit-learn python3 cnn-keras
1
手语是听力障碍人士交流的媒介。 它使用手势而不是声音来传达意义。 它结合了手的形状、手、手臂或身体的方向和运动、面部表情和唇形来传达信息。 不同类型的项目是针对聋哑人、听力障碍的人进行的。 提出了一种用于手语识别的具有计算机人机界面的系统。 但是该项目存在全国范围内的差异。 该项目的主要思想是设计一个系统,用于在任何公共场所与外界进行交流,从而无需在公共场所进行口译。 在那个项目中,我们需要以数字符号的印度手语为数据库形式的孤立图像。 普通相机可用于获取此数字符号。 主成分分析 (PCA) 用于预处理,其中删除冗余和不需要的数据。
2023-03-22 20:46:07 621KB PCA morphological processes
1
VoiceToDeaf Web应用程序 VoiceToDeaf是一种翻译器,可用于将语音翻译为手语命令。 应用程序的3D幽默模型负责表示与用户语音相关的手语命令。 此应用程序是为僧伽罗语语音开发的,它还根据僧伽罗语手语词典表示了手语命令。 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 有关如何在实时系统上运行项目的注释,请参阅并遵循以下说明。 要求 此要求应添加到本地计算机上,以在本地计算机上配置和运行该应用程序。 后端: Python编程语言(Python 3.6) 烧瓶框架 Tensorflow机器学习库(CNN库) Anaconda Python发行平台(用于开发) 脾气暴躁的 Wav库 前端 React.js框架 Java脚本 Threejs框架 Node.js NPM软件包管理器 其他: 任何浏览器(用于运行和交互) 硬件:
2023-02-20 13:27:30 3KB
1
提出一种基于肌电传感器 和加速度计的识别人体手势的智能信息系统
2023-01-08 20:51:34 840KB 肌电传感器
1
基于java开发的手语识别APP源码(毕业设计项目).zip 基于java开发的手语识别APP源码(毕业设计项目).zip 基于java开发的手语识别APP源码(毕业设计项目).zip 基于java开发的手语识别APP源码(毕业设计项目).zip 基于java开发的手语识别APP源码(毕业设计项目).zip
2022-12-30 14:20:32 62.25MB java 手语识别APP源码 毕业设计 手语识别