现在在企业信息化办公中,用的最多就是微软的Office办公组合,Word、EXCEL、PPT等常用软件。这些软件虽然先进,但是也有其弊端,就是这些软件是产品,产品必然是要符合大部分的人的需要。而在这种信息化大潮当中,各样各业的企业如果想提高自己的工作效率,必然需要符合自己需要的软件公办工具。所以符合本公司自己流程的软件如雨后春笋般层出不穷,百家鸣放各行各业都有相应的专业软件。提高自己的工作效率,降低人力成本,是大势所趋。 基于python的手写数字识别系统的目的就是在于建立属于自己的一套手写识别系统,在日常的工作中,手写识别是一件非常重要的事情,比如说企业或事业单位当中。需要电子版的手签章,那么我们就可以在保存电子版手签章的同时,同样将手签的姓名或者是数字识别出来,保存到数据库当中,实现手签章与数据。对应一致性,这样可以很大程度地进行数据的校验。 关键词:手写数字识别系统;信息技术;python
2024-07-07 16:25:18 6.86MB python
1
基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zip 华中科技大学人工智能与自动化学院 Python课程设计,代码完整下载即用无需修改确保可以运行。 基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zip 华中科技大学人工智能与自动化学院 Python课程设计,代码完整下载即用无需修改确保可以运行。基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zip 华中科技大学人工智能与自动化学院 Python课程设计,代码完整下载即用无需修改确保可以运行。基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zip 华中科技大学人工智能与自动化学院 Python课程设计,代码完整下载即用无需修改确保可以运行。基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zip 华中科技大学人工智能与自动化学院 Python课程设计,代码完整下载即用无需修改确保可以运行。基于python实现的卷积神经网络手写数字识别系统源码(95分以上课程设计).zi
资源包含文件:设计报告word+源码及数据 使用 Python 实现对手写数字的识别工作,通过使用 windows 上的画图软件绘制一个大小是 28x28 像素的数字图像,图像的背景色是黑色,数字的颜色是白色,将该绘制的图像作为输入,经过训练好的模型识别所画的数字。 手写数字的识别可以分成两大板块:一、手写数字模型的训练;二、手写数字的识别。其中最为关键的环节是手写数字模型的训练。本次选取使用的模型是多元线性回归模型。手写数字有 10 中,分别是 0~9,所以可以将该问题视为一个多分类问题。 详细介绍参考:https://blog.csdn.net/sheziqiong/article/details/125389873
Python课程设计—基于卷积神经网络手写数字识别系统,经老师指导通过的高分项目。 选题 利用numpy完成手写数字数据集的识别,完成多分类问题,搭建神经网络,并且完成模型的训练以及性能评估,可视化数据 用到的知识 sklearn 数据集的提取分割 yaml配置文件使用 numpy实现各个神经层 参数初值选择 梯度下降方法选择 sklearn 分类模型评估 matplotlib数据可视化 设计模式 Markdown写报告
2024-04-08 17:06:06 559KB python课程设计 卷积神经网络
数字识别是扫描文档并将其转换为电子格式的过程中必不可少的元素。 在这项工作中,正在提出一种新的多像元大小(MCS)方法,以利用定向梯度直方图(HOG)特征和基于支持向量机(SVM)的分类器对手写数字进行有效分类。 基于HOG的技术对在相关特征提取计算中使用的像元大小选择很敏感。 因此,一种新的MCS方法已用于执行HOG分析和计算HOG功能。 该系统已经在基准MNIST手写数字基准数据库上进行了测试,使用独立测试集策略已达到99.36%的分类精度。 还使用10折交叉验证策略对分类系统进行了交叉验证分析,并且获得了10折分类精度为99.26%。 所提出的系统的分类性能优于使用复杂过程的现有技术,因为在特征空间和分类器空间中使用简单的操作已达到了同等或更好的结果。 该系统的混淆矩阵图和接收器工作特性(ROC)图显示了所提出的基于MCS HOG和SVM的新型数字分类系统的优越性能。
1
机器学习手写数字识别系统项目完整代码和参考报告+适用学生党+利用机器学习完成手写数字识别+博客链接:https://blog.csdn.net/shooter7/article/details/113337835 手写体数字识别是机器学习中模式识别的一个重要的研究方向,在现今这个信息化的时代中有着非常广泛的应用,例如邮件分拣、银行票据识别。,其准确率还不够理想,仍需要进一步提升。手写体数字识别系统的工作主要是运用K最邻近算法实现了对手写体数字的识别,支持上传本地图片和调用摄像头进行拍摄两种识别的途径,同时有添加完善数据集、查看测试集的识别率的功能,形成了一个比较完整的手写数字识别系统。本文还运用python的GUI编程中的tkinter模块设计了一个简洁友好的用户界面。本文重点阐述了手写数字识别图像处理流程,运用KNN算法进行分类识别,同时运用数理统计的方法对K值的选取进行优化,最后对整个系统的实现结果进行了分析。采用了TestDigits测试集,并对其进行测试,实验的数据显示本文所设计的手写体数字识别系统取得较高的识别率,对上传和拍摄的图片也有着较高的识别率。
2023-02-21 02:31:50 2.01MB 机器学习 KNN算法 手写数字识别
1
手写数字识别系统的设计实现matlab自带的神经网络算法实现
2022-12-09 11:28:07 335KB 手写字体识别 数字识别 matlab
Python课程设计基于卷积神经网络的手写数字识别系统源码.zipPython课程设计基于卷积神经网络的手写数字识别系统源码.zipPython课程设计基于卷积神经网络的手写数字识别系统源码.zip
1
模式识别课程设计报告、课程实验报告 个人从网上找的资料然后运行、截图并总结。希望对大家有用。 声明:手写数字识别系统没有程序,因为我们的老师没要求我们写程序。但网上这种代码很多,很容易找到。
1
【手写数字识别】基于BP神经网络手写数字识别系统含Matlab源码
2022-11-09 16:29:46 221KB
1