# Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码 1. 使用Pytorch定义ReNet50网络模型; 2. 使用Pytorch加载MNIST数据集,首次运行自动下载; 3. 实现训练MNIST手写数字图像分类,训练过程显示loss数值; 4. 训练完成后保存pth模型权重文件; 5. 在测试集上测试训练后模型的准确率。
2024-07-02 13:31:41 83.7MB resnet pytorch mnist 卷积神经网络
凯拉斯·明斯特 概述 我们将建立一个识别手写数字图像(MNIST)的模型。 使用和超级简单的库开发。 使用 Micro Framework包装到Webapp中。 依存关系 现在,我们准备安装必要的依赖项。 我们项目所需的依赖项列表如下: 张量流(1.5.0) 凯拉斯(2.1.4) 烧瓶(0.12.2) h5py(2.7.1) 您可以使用以下命令同时安装所有这些: pip3 install tensorflow keras Flask h5py 卷积神经网络 在机器学习中,卷积神经网络(CNN,或ConvNet)是一类深层的前馈人工神经网络,已成功应用于分析视觉图像。 卷积神经网络是一种神经网络,它明确假设输入是图像,这使我们可以将某些属性编码到体系结构中。 构建ConvNet架构的层主要有三种类型:卷积层,池化层和完全连接层。 我们将堆叠这些层以形成完整的ConvNet体系结构
2024-03-17 19:58:10 4.32MB JupyterNotebook
1
模式识别高分课程设计,利用BP神经网络对0-9的手写数字图像数据进行分类。 图像数据存放在Img的文件夹中,0-9每个数字各有55个样本,共550个图像样本数据。文件中的all_data.mat是为了对这些图像数据全部提取到MATLAB的工作区中,以便于MATLAB对数据的处理。载入后是一个4维的900×1200×10×55的阵列,900×1200为每一张图像的尺寸/分辨率,10指的是为0-9的10类图像,55是每一类的样本数目; 代码中有详细注释,整个过程分为:①载入图像数据;②裁剪图像的无效信息;③特征选择和提取;④特征预处理;⑤划分数据集;⑥网络训练;⑦网络测试;⑧用户验证过程 网络经多次测试后对训练样本和测试样本的分类准确率均在95%以上,MATLAB自建BP神经网络,代码每个过程都有注释详解,有利于读者对BP神经网络有更好的把握。 在用户验证过程中,向客户提供验证端口,读者在读懂代码的基础上,可以继续在此做一个UI界面或者接口,作为课程设计的话将会更加完善。
1
内容包含数据集、完整源码以及运行结果。 实验内容:利用GAN网络、mnist数据集生成数字图像。 实验过程:1.进行环境配置 2.首先进行数据准备,将MNIST数据集离线下载,添加至对应的路径,避免代码执行过程中重复下载。 2.对MNIST数据集进行可视化展示,便于之后对比。 3.导入程序需要的模块,如torch、numpy等。 4.对分析器进行参数设定与解析。 5.定义生成器和判别器,实现隐藏层、BN以及前向传播。 6.定义损失函数。 7.初始化生成器、判别器和使用GPU加速。 8.定义神经网络优化器,使用动量梯度下降法。 9.对生成网络和训练网络进行训练。 10.结果保存。 11.修改参数,进行结果对比并分析。
1
1、资源内容:基于SVM的手写数字图像识别 2、使用/学习目标:了解手写数字图像识别 3、应用场景:基于Minist数据集的手写数字图像处理等内容实现 4、特点:基于SVM手写数字图像识别代码实现过程 5、适用人群:想阅读手写数字图像识别源码的初学者 6.使用/学习说明:在学习的过程要结合SVM核心原理与手写数字图像识别需求分析和方案设计,在实践中不断提升
2022-10-31 15:03:21 25.75MB svm 手写数字识别
1
该数据集是将从官网下载的MNIST数据集转换成了.png格式的图片之后的数据。新手通过本地使用该数据集训练模型可以更好的了解图像分类任务的完整的流程,有助于扩展到别的分类任务。
2022-07-29 09:07:56 29.64MB mnist 手写数字 图像分类 数据集
1
# Pytorch实现VAE变分自动编码器生成MNIST手写数字图像 1. VAE模型的Pytorch源码,训练后其解码器就是生成模型; 2. 在MNIST数据集上训练了50个epochs,训练过程的生成效果放在result文件夹下,训练后的模型保存为model.pth,可用于生成新的手写数字图像; 3. 训练代码会自动下载MNIST数据集,运行代码即可自行训练。
2022-06-11 11:06:27 5.53MB pytorch vae 变分自动编码器 手写数字
MNIST数据集是一个手写阿拉伯数字图像识别数据集,图片分辨率为 20x20 灰度图图片,包含‘0 - 9’ 十组手写手写阿拉伯数字的图片。其中,训练样本 60000 ,测试样本 10000,数据为图片的像素点值,作者已经对数据集进行了压缩。
2022-06-01 15:20:42 10.16MB 数据集
1
深大计软_最优化方法_实验1:K-Means聚类之Python实现手写数字图像MNIST分类
2022-04-11 14:10:32 873KB python kmeans 聚类 分类
来源:《深度学习入门:基于Python的理论与实现》。包含一个mnist.py文件和四个MNIST图像集的数据包,测试过是完整的,可以用。
2022-02-05 10:44:26 20.91MB mnist
1