内容概要:本文详细介绍了基于Matlab GUI界面的手写体数字识别系统的实现过程。该系统主要分为四个部分:首先是图像预处理,包括二值化、噪声处理、图像分割、归一化和细化等步骤,确保输入图像的质量;其次是特征提取,将处理后的图像转化为可用于机器学习的特征向量;再次是BP神经网络的构建与训练,用于对手写体数字进行分类识别;最后是Matlab GUI界面的设计,提供用户友好型的操作环境。文中不仅给出了详细的代码示例和技术解析,还展示了系统的实验结果及其在实际应用场景中的表现。 适合人群:对图像处理、机器学习感兴趣的初学者,尤其是希望了解如何使用Matlab实现简单AI项目的开发者。 使用场景及目标:适用于需要快速搭建手写体数字识别原型的研究人员或学生项目。通过该项目,学习者可以掌握从图像采集到模型部署的完整流程,同时加深对BP神经网络的理解。 其他说明:作者强调了预处理对于提高识别精度的重要性,并分享了一些实践经验,如选择合适的滤波器尺寸、调整神经网络层数等技巧。此外,文中提到未来可以探索的方向,例如引入更先进的深度学习算法以进一步提升系统的鲁棒性和准确性。
2025-04-22 14:53:45 391KB
1
MATLAB平台:手写体数字识别系统设计(含GUI界面)
2023-04-20 02:54:27 361KB 手写数字识别 图像识别
1
MATLAB手写体数字识别系统设计(含GUI界面)
2023-04-18 14:05:37 360KB matlab手写数字识别 手写字识别
1
基于VGG Simple手写体数字识别的研究与FPGA实现 vivado的工程 大家自行学习
2023-03-07 10:16:46 35.47MB FPGA vivado 手写体数字识别
1
基于知识库的手写体数字识别
2023-02-28 10:44:48 25KB matlab
1
本资源为深度学习课程设计 含课程设计完整过程的数据集以及实验报告 可供参考 由matlab代码编写构建双层CNN卷积神经网络识别Minist的手写体数据,其中将不断改进的代码跟另外使用工具函数编写的另一个CNN程序结果比较,有一个较为直观的运行效果对比。能够很好的看出程序设计的优劣。使用的是双层卷积神经网络,后向传播用的是随机梯度下降及其优化版本。 适用于CNN初学者以及希望更进一步的学习者。 dataset是MNIST。这里层的概念是指convolution+pooling 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,把minibatch设为1就是SGD,大于1就是MSGD OPTIMAL是优化版的主函数,OPTIMAL_FINALE是最终优化版的主函数,toolbox是用工具箱函数写的CNN,用于对比之前函数的运行效果。 SGD_MSGD,OPTIMAL,OPTIMAL_FINALE,toolbox都可以直接运行得到答案
1
基于贝叶斯分类器的手写体数字识别,识别率为87%,加大训练样本识别率更高。
2023-01-02 09:40:34 11.48MB 贝叶斯分类器
1
研究的是手写字符的识别系统,首先介绍了现阶段光学识别技术(ORC)的发展情况,并对其在发展过程中存在的各种难题进行了分析和总结。然后对神经网络的国内外研究现状和主要特点进行详细的分析说明,并对神经网络模型进行了简要的介绍。在建立字符识别系统过程中首先需要制作手写字符的图片作为字符识别系统的输入信息,运用MATLAB作为系统实验的处理工具,建立基本函数。对字符图片进行归一化处理获取字符图片的数字的特征值,运用BP神经网络对输入的各个手写字符的特征值采进行训练,通过训练后的神经网络系统后对各手写字符图片进行识别。在实验环节采用 MATLAB 的读取手写的字符图像信息,由于提取的图像信息没有经过归一化处理所以无法获取其字符图像的特征信息。通过采用自定义的归一化算法对读取的字符图像归一化的预处理提取数字特征。将提取的数字特征信息作为神经网络的输入,对神经网络进行训练获取神经网络的输出结果。
2022-12-26 19:31:12 1.01MB BP神经网络 手写体数字识别 MATLAB
1
该代码是采用Python语言完成,调用OpenCV库,使用PyCharm软件编写完成,调用PC端摄像头识别纸上的手写体数字。
2022-12-06 11:26:15 312.77MB 手写体数字识别 图像识别
1
摘要:通过对手写体数字识别技术的研究,本文建立了一个脱机手写体数字识别系统,对手写体数字的识别提出了一些新的思路,并对识别过程中所采用的关键算法进行了阐述。本文提出了二次毛刺去除法对手写体数字图像进行预处理,采用骨架搜索法来提取字符的孔洞特征,使用模板匹配加骨架搜索的方法来确定不同方位的端点,利用模板匹配法来提取字符的横线及竖线特征,采用特征匹配法对字符进行识别。实验证明,本文所建立的基于形体特征的手写体数字识别系统能较全面地反映手写体数字各方面的特征,总的识别率达到95.5%,有着较好的识别性能和十分广泛的应用前景。   1、引言   随着计算机硬件速度的快速提高及价格的不断下降,计算机
1