本文介绍了如何使用akshare获取股市新闻,并利用snownlp进行情绪分析。以600887伊利股份为例,通过获取股票新闻数据,对每条新闻进行情绪分析,判断其乐观或悲观情绪。具体方法是将新闻文本输入snownlp,计算情感得分,小于0.4的为悲观,否则为乐观。最终统计乐观与悲观新闻的比例,结果显示乐观新闻占比77,悲观新闻占比23。该方法可用于股市情绪监测,为投资决策提供参考。 在当今瞬息万变的金融市场中,投资者面临的挑战之一是如何准确捕捉市场的即时情绪。股票市场新闻作为投资者了解市场动态的一个重要渠道,其中蕴含的情绪信息对于投资决策至关重要。本文深入探讨了如何结合Python的数据分析库akshare和自然语言处理工具snownlp来实现对股市新闻情感的分析。通过这一方法,投资者可以量化新闻文本中的情绪倾向,区分出新闻报道是偏向乐观还是悲观,这有助于投资者更加理性地看待市场,并作出更为明智的决策。 要实现这一目标,需要从akshare库中获取到相关的股票新闻数据。akshare是一个强大的金融市场数据接口包,它提供了丰富多样的接口来获取包括股票、期货、基金等在内的金融市场数据。在本文案例中,选取了伊利股份(股票代码:600887)作为研究对象,通过调用akshare提供的接口,成功获取了该股票相关的新闻数据。 利用snownlp进行新闻文本的情感分析。snownlp是一个基于深度学习的中文自然语言处理库,它通过训练得到的模型可以对中文文本的情感色彩进行评分,从而判断文本是积极的、中性的还是消极的。在本文中,通过将获取到的每条新闻文本输入snownlp进行分析,得到了一个情感得分。根据得分的高低,本文采取了一个简单但有效的阈值判定规则:若得分小于0.4,则判定新闻情绪倾向于悲观;若得分大于或等于0.4,则判定新闻情绪倾向于乐观。 接下来,本文对获取到的新闻进行了情绪分析,并对乐观和悲观情绪的新闻进行了统计。结果显示,在分析的新闻样本中,乐观情绪的新闻占据了77%,而悲观情绪的新闻占据了23%。这一比例反映了伊利股份在市场中的整体情绪倾向。尽管每条新闻的情绪得分并不一定能完全准确地代表新闻本身的真正情感色彩,但大量新闻样本的统计结果对于评估市场情绪提供了有价值的参考。 值得注意的是,这一方法不仅适用于单一的股票,还可以广泛应用于整个股市的多只股票。投资者可以通过这一方法进行跨股票或整个板块的情绪分析,进而形成对市场情绪的整体评估,为投资决策提供更为全面的信息支持。 在实际操作中,这一情绪分析方法还能够与其他技术分析工具结合使用,形成一套完善的股票分析系统。例如,可以将情绪分析与K线图、成交量、均线等技术指标结合,以观察情绪变化与股票价格波动之间的关系,从而为投资策略的制定提供更为丰富的参考数据。 需要强调的是,尽管情绪分析能够提供市场情绪的量化信息,但任何单一的分析工具都无法全面覆盖市场的所有复杂因素。因此,投资者在进行投资决策时,仍需综合考虑市场基本面分析、技术分析以及个人的投资经验等多方面的因素,以形成更为全面和准确的投资判断。
2025-11-27 14:18:47 1.11MB 软件开发 源码
1
在金融领域,特别是股票分析中,情绪分析是一种重要的技术,它可以帮助投资者理解市场情绪和公众对特定股票的看法。VADER(Valence Aware Dictionary and sEntiment Reasoner)是专门用于社交媒体文本的情感分析工具,尤其适合处理非正式和口语化的语言。在Python编程环境下,我们可以利用VADER库来对股票相关的新闻、论坛讨论或推文进行情绪分析,以获取对市场情绪的量化理解。 让我们深入了解VADER。VADER是由 nltk(Natural Language Toolkit)库提供的一个预训练模型,它内置了一个情感词典,包含了大量带有正向、负向和中性情感色彩的词汇。VADER不仅考虑了单词本身的情感极性,还考虑了词序、标点符号和大写字母等因素,使得它能有效地处理短语和句子的情感强度。 在Python中,使用VADER进行情感分析的步骤如下: 1. **安装依赖**:确保已经安装了nltk库,如果未安装,可以使用`pip install nltk`命令进行安装。 2. **下载VADER资源**:在Python环境中运行以下代码,下载VADER所需的数据: ```python import nltk nltk.download('vader_lexicon') ``` 3. **导入VADER**:使用nltk的vader_lexicon模块。 ```python from nltk.sentiment.vader import SentimentIntensityAnalyzer sid = SentimentIntensityAnalyzer() ``` 4. **进行情感分析**:将股票相关的文本输入VADER进行分析,得到四个分数:积极(pos)、消极(neg)、中性(neu)和复合分数(compound)。复合分数是基于其他三个分数综合计算出的一个整体情感倾向,范围在-1(最负面)到1(最正面)之间。 ```python text = "这里是股票相关的文本" sentiment_scores = sid.polarity_scores(text) print(sentiment_scores) ``` 5. **结果解读**:根据复合分数判断文本的整体情感倾向。通常,如果compound接近1,则表示文本非常积极;接近-1则表示非常消极;接近0则表明文本情感中性。 结合股票分析,我们可以将VADER应用到实际场景中: - **新闻分析**:收集并分析股票相关的新闻标题和内容,通过VADER计算出整体情绪,预测市场走势。 - **社交媒体监控**:抓取社交媒体上的股票话题讨论,分析用户的情绪,了解大众对某只股票的情绪倾向。 - **事件响应**:当有重大公司公告或经济事件发生时,快速进行情绪分析,以便快速做出投资决策。 在项目"Stock-Analysis-master"中,可能包含了一个完整的股票分析系统,使用VADER进行情绪分析的部分可能涉及数据抓取、清洗、分析以及可视化等多个步骤。具体实现可能包括以下内容: 1. **数据获取**:利用Web爬虫或API获取股票相关新闻、论坛讨论等文本数据。 2. **数据预处理**:清洗文本,去除无关字符,如HTML标签、特殊符号等,以便VADER能正确分析。 3. **情绪分析**:对预处理后的文本使用VADER进行情感分析,获取每个文本的情感分数。 4. **结果汇总**:统计分析所有文本的整体情绪趋势,可能包括平均复合分数、情感分布等。 5. **可视化展示**:通过图表展示情绪分析结果,如时间序列的情绪变化图,便于直观理解市场情绪的演变。 6. **模型优化**:可能还包括对VADER的调整和优化,比如结合领域知识构建自定义词典,提高分析准确性。 通过这样的分析,投资者可以获得更深入的市场洞察,辅助其做出更明智的投资决策。在实际应用中,还需要注意VADER的局限性,比如可能不擅长处理复杂的语境和多层含义的文本,因此在分析时需结合其他方法和数据来源,以获得更全面的视角。
2025-11-20 15:27:26 8KB Python
1
在当今信息爆炸的时代,财经新闻和股票讨论平台如雪球财经成为投资者获取市场信息、分享投资经验和表达观点的重要场所。使用Python编程语言开发的财经新闻爬虫源码,提供了一种高效抓取这类信息的手段。该爬虫能够针对热门股票讨论和新闻进行数据采集,具体包括标题、作者、阅读量、评论数等关键信息。这些数据对于投资者情绪分析和市场趋势预测具有重要意义。 投资者情绪分析作为行为金融学的一个分支,研究投资决策背后的心理因素。通过对财经新闻和投资者讨论的情感倾向进行量化分析,可以判断市场情绪的乐观或悲观状态。这有助于投资者从群体行为中获取信号,以此来指导自己的投资决策。市场趋势预测则是基于历史数据和当前市场信息来预测股票价格或市场指数的未来走势,财经新闻和讨论中的情绪变化是重要的参考指标。 该爬虫源码为研究者和投资者提供了一种自动化的数据采集手段,通过程序化地爬取雪球财经中的热门内容,使得分析工作变得更为快速和便捷。Python作为一门功能强大且易于学习的编程语言,非常适合进行数据抓取、数据处理和数据可视化等工作。事实上,Python已经成为数据科学和金融分析领域最受欢迎的编程工具之一。 爬虫程序通常包含多个组件,例如请求处理器、响应解析器、数据存储等。在本例中,该爬虫首先使用Python的requests库或者urllib库来发送网络请求,获取网页内容。然后,利用BeautifulSoup库或lxml库对网页进行解析,提取需要的数据。由于网页结构可能会有所变化,爬虫程序可能需要根据实际情况进行调整,以确保数据的正确抓取。爬取到的数据可以被存储在数据库中,或者直接导出为CSV或Excel文件,用于进一步的数据分析和处理。 尽管数据抓取和分析在投资决策中具有重要作用,但在实际应用时也需要考虑到法律法规和道德伦理问题。在使用爬虫抓取数据时,开发者和用户都应遵守相关网站的服务条款,尊重数据的版权和隐私权,确保数据获取和使用的合法性。 该Python财经新闻爬虫源码不仅提供了快速获取财经资讯的手段,而且为投资者情绪分析和市场趋势预测提供了重要的数据基础。随着技术的不断进步,未来类似的爬虫工具将会在投资分析领域扮演越来越重要的角色。
2025-09-11 20:13:41 3KB Python 源码
1
ChatGPT 技术实现的情感识别与情绪分析方法 ChatGPT 技术是基于大规模预训练语言模型的生成式对话系统,能够实现高效的 情感识别与情绪分析。其核心思想是通过训练大规模语料库,使模型能够根据上下文生成准确、连贯的回答,进而实现对情感和情绪的识别。 在训练模型的过程中,ChatGPT 技术引入了多任务学习的思想,通过同时训练多个相关的任务,进一步提高情感识别与情绪分析的性能。这些任务包括情感分类、情感强度预测等。通过共享模型参数,可以在一个模型中同时学习多个任务,提高模型的泛化能力。 ChatGPT 技术还采用了注意力机制和上下文编码技术,以提高情感识别与情绪分析的准确程度。通过注意力机制,模型能够更加关注与情感和情绪相关的信息,提取重要的上下文特征。而上下文编码技术则可以将生成式回答的上下文信息编码为固定维度的表示,方便后续的情感识别和情绪分析。 在实际应用中,ChatGPT 技术可以广泛应用于社交媒体分析、情感智能交互等方面。其强大的智能问答和对话生成能力,可以帮助用户更好地理解和分析情感和情绪。但是,ChatGPT 技术仍然存在一些挑战和限制,例如生成式模型的解释性较差、对训练数据的依赖性较高等。 ChatGPT 技术为情感识别与情绪分析提供了新的思路和方法,并具有重要的应用前景。但是,需要进一步的研究和改进,以提高模型的泛化能力和解释性。 知识点: 1. ChatGPT 技术是基于大规模预训练语言模型的生成式对话系统。 2. ChatGPT 技术能够实现高效的 情感识别与情绪分析。 3. 多任务学习可以提高情感识别与情绪分析的性能。 4. 注意力机制和上下文编码技术可以提高情感识别与情绪分析的准确程度。 5. ChatGPT 技术可以广泛应用于社交媒体分析、情感智能交互等方面。 6. ChatGPT 技术存在一些挑战和限制,例如生成式模型的解释性较差、对训练数据的依赖性较高等。 ChatGPT 技术为情感识别与情绪分析提供了新的思路和方法,并具有重要的应用前景。但是,需要进一步的研究和改进,以提高模型的泛化能力和解释性。
2025-05-19 21:01:30 38KB
1
应用场景 在金融市场中,投资者需要了解市场情绪以做出更明智的投资决策。金融市场情绪分析与预测系统可以通过分析新闻、社交媒体等文本数据,判断市场情绪的积极或消极程度,并尝试预测市场走势。 实例说明 此实例使用 DeepSeek 模型对金融新闻文本进行情绪分析,并结合历史数据进行简单的市场走势预测。 在金融市场中,市场情绪分析与预测是一项极具挑战性的任务,但是它对投资者的决策过程具有至关重要的作用。随着技术的进步,尤其是自然语言处理技术的突破,金融市场的情绪分析变得越来越可行。本文将介绍如何利用DeepSeek模型进行金融市场的情绪分析与预测,并结合Python编程实现这一过程。 DeepSeek模型是一种基于深度学习的算法,它能够处理和分析大量的文本数据,从中提取出关键信息,进而判断市场情绪的倾向性。该模型的核心在于将复杂的非结构化文本数据转化为结构化的信息,并通过深度学习技术理解文本中的情感色彩。这使得模型可以区分新闻或社交媒体上的言论是积极的还是消极的,抑或是中性的。 在金融市场应用中,这一技术可以帮助投资者把握市场情绪的脉搏,从而预测市场走势。例如,如果市场情绪普遍偏向积极,那么可能会吸引更多投资者进入市场,从而推高股价。相反,消极的市场情绪可能会导致投资者信心下降,引发市场下跌。 在实际操作中,开发者首先需要收集相关的文本数据,这可能包括金融新闻、社交媒体帖子、财报报告等多种类型的文本信息。这些数据的收集需要利用网络爬虫、API接口等技术手段实现自动化获取。接着,这些文本数据将通过预处理技术进行清洗和格式化,以便于模型进行学习。 预处理步骤通常包括去除停用词、标点符号、数字等非关键信息,进行词干提取或词形还原,将文本转换为词袋模型或TF-IDF特征向量等形式。在数据预处理完成之后,这些向量化的文本数据就可以输入到DeepSeek模型中进行训练和预测了。 通过训练,DeepSeek模型可以学习到不同文本中情绪倾向的模式,并将这些模式应用到未知的文本数据中,以此来分析和预测市场情绪。具体而言,开发者可以设定模型的输出为正、负或中性的情绪倾向概率值,进而构建一个情绪分析的分类器。该分类器可以对最新的市场文本数据进行实时的情绪判断。 除了情绪分析,市场走势预测也是金融投资决策的重要依据。结合历史市场数据,投资者可以利用时间序列分析方法,比如ARIMA模型、长短期记忆网络(LSTM)等技术,对市场情绪与股市走势之间的关系进行进一步探索。通过分析历史数据,开发者可以训练预测模型,使其能够基于当前市场情绪对未来市场走势做出预测。 当然,市场情绪分析与预测系统也存在一定的局限性。例如,市场情绪可能受到多种复杂因素的影响,包括突发事件、宏观经济数据、政策变化等,这些因素可能难以通过单纯的情绪分析来充分解释。因此,投资者在使用该系统时,应当结合其他分析工具和市场知识,进行综合判断。 总体而言,基于DeepSeek模型的金融市场情绪分析与预测系统为投资者提供了一种新的决策辅助工具。通过Python编程实现的源码可以有效地分析市场情绪,并结合历史数据对未来市场趋势做出预测,从而辅助投资者做出更加理性的投资决策。这种分析方法的普及,有望提高投资决策的质量和效率,成为金融市场中不可或缺的一部分。
2025-03-31 19:08:04 2KB Python 金融市场 情绪分析
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:17:00 8.06MB python 人工智能 ai
1
情感分析 一个基本的情绪分析器会从twitterAPI中获取推文,并对其进行分析,并显示有多少推文支持该推文,而有多少则不支持该特定关键字。一次分析10条推文。 Textblob库用于分析目的。 复制您的不记名令牌。 打开终端,然后键入以下命令。 export BEARER_TOKEN = {您的BEARER TOKEN}
2024-06-04 12:34:14 2KB Python
1
微博热搜情绪分析.docx
2022-10-22 10:25:58 889KB 微博热搜 kafka 学生作业
1
TextEmotions 是一个用 PHP 编写的文本情感分析器的概念。 它通过搜索情绪指标(词)来解析文本并找出文本情绪。 可用指标列表 积极性分数(文本中使用的单词数)。 $ positivty_score = $ analyzer -> getPositivityScore (); 负面分数(文本中使用的单词数)。 $ negativity_score = $ analyzer -> getNegativityScore (); 依靠分数,我们可以计算出文本的总体情绪。 阳性率。 $ positivity_metric = $ analyzer -> getPositivityMetric (); // returns a number from 0 to 100 负百分比。 $ negativity_metric = $ analyzer -> getNe
2022-10-07 13:51:53 15KB PHP
1
情绪分析 python源代码 情绪分析 python源代码 情绪分析 python源代码 有模型直接跑
2022-08-11 19:25:13 76.56MB 情绪分析
1