近年来,恶意软件呈现出爆发式增长势头,新型恶意样本携带变异性和多态性,通过多态、加壳、混淆等方式规避传统恶意代码检测方法。基于大规模恶意样本,设计了一种安全、高效的恶意软件分类的方法,通过提取可执行文件字节视图、汇编视图、PE 视图3个方面的静态特征,并利用特征融合和分类器集成学习2种方式,提高模型的泛化能力,实现了特征与分类器之间的互补,实验证明,在样本上取得了稳定的F1-score(93.56%)。
1
针对随机森林(RF,random forest)算法的投票原则无法区分强分类器与弱分类器差异的缺陷,提出一种加权投票改进方法,在此基础上,提出一种检测 Android 恶意软件的改进随机森林分类模型(IRFCM,improved random forest classification model)。IRFCM选取AndroidManifest.xml文件中的Permission信息和Intent信息作为特征属性并进行优化选择,然后应用该模型对最终生成的特征向量进行检测分类。Weka 环境下的实验结果表明IRFCM具有较好的分类精度和分类效率。
1
恶意软件分类 机器学习和恶意软件分类 基于API调用序列,主要是n-gram和tfidf特征 机器学习工具用的lightgbm 恶意软件根据API序列分类 使用机器学习方法对恶意软件类型进行分类 大多数功能是从API序列中提取的 使用n-gram和tfidf提取向量 您可以从该下载火车 程序介绍 file_split.py读取csv文件,并按照不同的文件ID组织 preprocess.py可以重新导入每个文件,转成json格式,和序列化api basic_feature.py提取简单特征 tfidf_model.py生成tfidf模型 feature.py利用生成的tfidf模型转换训练和测试数据 light_gbm_model.py模型调参 model_predict.py结果预测 说明 这是参加第三届『阿里云安全算法挑战赛』源代码,最后成绩在Top30以内,不在Top10以内。 因为
2022-03-23 19:59:16 282KB 系统开源
1
ml-恶意软件分类器 参考 Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad Rieck "Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket", 21th Annual Network and Distributed System Security Symposium (NDSS), February 2014 原始文件可以在找到。 原始数据集可在找到。 用法 该代码位于code文件夹
2022-03-02 16:36:57 5.44MB learning machine-learning machine scikit-learn
1
Kaggle 第三名解决方案 米哈伊尔·特罗菲莫夫、德米特里·乌里扬诺夫、斯坦尼斯拉夫·谢苗诺夫。 在私人排行榜上获得 0.0040 分 如何重现提交 不要忘记检查 ./src/set_up.py 中的路径! ./create_dirs.sh cd ./src ./main.sh cd ../ 并运行learning-main-model.ipynb 、 learning-4gr-only.ipynb 、 semi-supervised-trick.ipynb和final-submission-builder.ipynb 。 依赖关系 Python 2.7.9 Python 3.1.0 sklearn 0.16.1 麻木 1.9.2 熊猫 0.16.0 希克 1.1.1 pypy 2.5.1(安装了 joblib 0.8.4) scipy 0.15.1 xgboost
2021-11-22 20:16:40 227KB Python
1
本文讨论了使用机器学习进行恶意软件分类的方法,问题和解决方案。 可以相信,被释放的恶意软件的数量可能会超过权威软件的释放。 由于恶意软件每年都会变得越来越复杂,因此需要从传统方法转变为使系统自动学习。 这里的主要重点是研究机器学习方法以及它们的检测和分类问题。 说明了特征选择和高假阳性问题,并提出了解决方案。 然后将操作码,n-gram操作码,基于图像的分类技术进行比较。 这些方法将有助于清除恶意软件并将其分类到其家族中。 与常规操作码和基于图像的分类器相比,使用n-gram操作码分类时基于准确性的结果更好,但是使用集成方法结合了这两种方法的优点,例如,过拟合和FPR较低,最终结果显示出分类精度更高和提供总体上更好的恶意软件分类
2021-10-30 22:03:57 1.01MB Machine Learning Malware Detection
1
恶意软件分类器 这是恶意软件分类研究的代码库。 所有深度学习模型都是使用Python 3.6+和PyTorch 1.9实现的。 点击查看研究详情 数据 源数据是由恶意软件动态分析系统生成的json报告。 对数据进行了分析,以提取有关恶意样本的最有用信息。 分析的结果是,选择了3698个特征,并将在此基础上进行进一步的分类。 因此,为恶意软件的每个实例分配了一个尺寸为3698的二进制特征向量,该特征向量的标签是卡巴斯基反病毒软件进行分类的结果。 该数据库包含来自8种不同类型的恶意软件的大约10,000个带标签的样本和大约14,000个未带标签的样本。 数据可视化 尺寸为3698的规格化矢量表示为大小为61×61(61≈√3698)的RGB图像,其中,每个像素的颜色由相应特征的值设置。 自动编码器 在未标记的数据上训练了一个潜在空间尺寸为200的自动编码器模型,以便使用预训练的编码器对恶意软
1
科大讯飞恶意软件分类挑战赛测试集答案,适合用于冲榜使用。
2021-08-30 21:05:14 63KB 恶意软件分类
深度学习-恶意软件分类 Deep learning at the shallow end: Malware classification for non-domain experts
2021-08-04 15:05:25 1.29MB 深度学习 恶意软件分类
本文总共列出了119类恶意软件家族 列表列出了截止日期是2013年2月28日的Android平台上的木马以及在mobile-sandbox-system上的检测结果。这个表会一直更新,每个家族选取一列来做说明
2019-12-21 19:48:26 540KB 恶意软件分类
1