《随机过程(第五版)》是由刘次华编著,由华中科技大学大学出版社出版的一本研究生教学用书,专门针对学习随机过程这门课程的学生和研究人员。随机过程是20世纪初为了应对物理学、生物学、管理科学等领域的需求而发展起来的理论,它在自动控制、公用事业和管理科学等多个领域有着广泛的应用。
随机过程是一族无限多个、相互关联的随机变量的集合,通过概率论的方法揭示隐藏在随机性背后的规律。这一学科的基础由柯尔莫哥洛夫和杜布等人奠定,他们对随机过程的理论进行了深入研究。随机过程最早起源于物理学家如吉布斯、玻尔兹曼、庞加莱对统计力学的研究,以及后来爱因斯坦、维纳、莱维对布朗运动的开创性工作。
研究随机过程的方法主要分为概率方法和分析方法。概率方法涉及轨道性质、停时和随机微分方程等,而分析方法则包括测度论、微分方程、半群理论、函数堆和希尔伯特空间等。在实际应用中,往往需要结合这两种方法。此外,组合方法和代数方法在特定类型的随机过程研究中也有重要作用。
随机过程的研究内容广泛,包括多指标随机过程、无穷质点与马尔可夫过程、概率与位势理论,以及各种特殊过程的专题讨论。例如,马尔可夫链是1907年前后由马尔可夫提出的,1923年维纳定义了布朗运动,1953年杜布的著作系统地介绍了随机过程的基本理论,而伊藤清在1951年建立了关于布朗运动的随机微分方程理论。
随机过程可以根据统计特征和参数集与状态空间的特征进行分类。按照统计特征,可以分为独立增量过程、Markov过程、二阶矩过程、平稳过程、鞅、更新过程、Poisson过程和维纳过程。按照参数集和状态空间,随机过程可以分为离散参数离散型、连续参数离散型、离散参数连续型和连续参数连续型。
在概率论的基础上,随机过程的理论建立在概率空间的概念之上。概率空间由一个样本空间(所有可能结果的集合)、一个-代数(事件域,满足特定封闭条件的事件集合)和一个概率测度(满足概率公理的映射)构成。概率测度定义了事件发生的概率,并满足概率的性质,如非负性、单位性和可列可加性。独立事件是指它们的发生概率不受其他事件的影响,且其联合概率等于各自概率的乘积。
理解随机过程的关键在于掌握概率论的基础知识,包括样本空间、事件、概率的定义和性质,以及独立事件的概念。通过对这些基本概念的深入理解和应用,可以进一步探索随机过程中的复杂现象,从而在实际问题中找到规律并做出预测。
1