认为因短文本具有特征稀疏性和高度冗余性,微博短文本的预处理及学习方法研究已经成为微博信息挖掘及应用的关键,并在许多方面有着非常重要和广泛的应用。重点分析微博短文本的特性,并对微博短文本的预处理和学习方法及其应用现状进行归纳和总结,包括短文本特征表示、短文本特征拓展与选择、短文本分类与聚类学习、热点事件发现及自动文摘等。最后指出相关研究的局限性,并对未来的发展方向进行展望。
1
PDF格式。微博短文本情感分析的目的是发现用户对热点事件的观点及态度。已有的方法大多是基于词袋模型,然而,词袋模型 无法准确捕获带有情感倾向性的语言表现特征。结合卷积神经网络( CNN) 和长短期记忆网络( LSTM) 模型的特点,提出了卷 积记忆神经网络模型( CMNN) ,并基于此模型来解决情感分析问题。与传统算法相比,模型避免了具体任务的特征工程设计; 与 CNN 和LSTM 相比,模型既能够有效提取短文本局部最优特征,又能够解决远距离的上下文依赖。通过在COAE2014 数据集 上的实验来验证了模型对微博短文本情感分析的有效性。并与 CNN、LSTM 以及传统模型 SVM 做了实验对比,结果表明,模型 对于微博短文本情感分析在性能上优于其他3 种模型。
2021-12-06 21:56:35 318KB CNN 短文本分析 情感分析
1